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Abstract. A hybrid valuation methodology is proposed and tested for improving
the efficiency of contingent claims pricing by combiningArtificial Neural Networks
(ANN) and conventional parametric option pricing techniques. With one applica-
tion on financial derivatives and one on real options the method’s superiority is
demonstrated. The resulting efficiency is instrumental for real time applications.
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1 Introduction and the Hybrid ANN approach

Recently, Artificial Neural Networks (ANN) have been used for valuation of traded
derivatives (i.e., Hutchinson and Poggio, 1994; see also the review in Lajbcygier,
1999). In this paper we use a hybrid approach that combines parametric with ANN
methods, in order to improve the efficiency in real time option pricing. We demon-
strate the results with two applications, one in financial derivatives and one in real
options. We call the method Hybrid Numerical Option Pricing and ANN (NOP-
ANN) and we compare it with the traditional ANN methods and demonstrate the
method’s superiority.

Neural networks are universal approximations for continuous functions over a
compact set (see Cybenko, 1989; Hornik et al., 1989). A three-layer feedforward
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network is commonly used. It consists of an input and an output layer, corresponding
to model input and output variables x and y, respectively, as well as a hidden layer.
In the first stage, samples of data (x, y) called training data, are generated from
simulation or measurement. The neural network is then trained by adjusting its
weights so that the network predicted output “best” matches that of training data,
the target output. This is done by minimizing some norm of the error function
between the predicted output of the neural network and the targeted outputs. In
this paper instead of the backpropagation (BP) learning algorithm proposed by
Rumelhart et al. (1986), we use instead conjugate gradient algorithms (see for
example, Fletcher, 1987) in conjunction with Charalambous (1992) line search.
Given the input feature vector x, the output can be computed by,

y(x) = v0 +
H∑
i=1

vizi, zi = f (ψi), ψi = wio +
N∑
j=1

wijxj ,

where vi , i = 1, 2, . . ., H , is the weight on the branch connecting the hidden neuron
i to the output neuron, v0 is the threshold weight of output neuron, and zi is the
output of the ith hidden neuron computed andf is the activation function. Similarly,
wij , i = 1, 2, . . ., H , j = 0, 1, . . ., N , is the weight on branch connecting input j
to neuron i (input 0 corresponds to threshold weight). The two most widely used
activation functions are the logistic that is bounded in the range (0, 1) and the
tansigmoid bounded in (−1, 1). For the testing stage finally, a new set of input-
output samples is used.

An innovative approach, the hybrid approach, has been proposed by Watson and
Gupta (1996) to reduce the training data needed and to improve the generalization
capabilities of a neural network. Now, the target value for a given input vector x,
is the difference in the response between that of a coarse model and that of a fine
model. As the terminology might suggest, the “fine” calculations are computation-
ally far more expensive than the “coarse” calculations. The “coarse” alone cannot
provide the desired accuracy, and the “fine” would be overly expensive for real
time applications. This leads into a smoother input-output relationship, reducing
the number of fine model simulations and enhancing effectiveness. The principal
object of this paper is to examine the extent to which we can exploit a combina-
tion of neural network methodology and parametric option pricing to reduce the
computational requirements and price efficiently options in real time situations.

In this work the feedforward neural network structure with one-hidden layer will
be used (two-hidden layers did not offer any noteworthy improvement). All input
variables are scaled to zero mean and unit variance. We use tansigmoid activation
functions for the neurons in the hidden layer. The simple ANN tries to capture the
functional relationship between the option price, Vf (fine model) obtained by the
numerical option pricing (NOP) techniques and the input variables, while the hybrid
neural network tries to capture the functional relationship between the deviation of
the option price, Vf (fine model), from that given by the coarse model, Vc, and the
input variables.
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To be more specific for this hybrid approach we want to find the optimal set of
weights and biases, such that combined response of the ANN and the coarse model
is as close as possible to the fine model response, by solving the optimization
problem:

minw,v


F (w, v) = 1

2

l∑
j=1

e2
j


 , (1)

with l the number of learning samples and ej the error due to the j th input sample
point:

ej = (
yNj + Vcj

) − Vfj . (2)

The starting point for the above optimization problem is set to: v0 = v1 = . . . =
vH = 0 and wij to small random numbers, in which case yN = 0 and y = Vc. As
a consequence, it follows that at the optimal solution obtained, (w∗, v∗),

F
(
w∗, v∗) ≤ F

(
w(1), v(1)

)
= 1

2

l∑
j=1

(
Vcj − Vfj

)2
. (3)

This shows that once the ANN is trained, the overall response in the least squares
sense, will always be better than that of the coarse model. In the next section we
discuss the two contingent claims examples we will use in pricing.

2 The two examples: Financial and real options

We adopt the extended (with a dividend yield) Black and Scholes (1973) assump-
tions that a traded asset follows in the risk-neutral probability measure the stochastic
process

dS

S
= (r − δS)dt + σSdzS. (4)

It has an instantaneous standard deviation σSS, it pays a dividend yield δS , r is the
continuous riskless interest rate, and dzS is the increment to the standard Wiener
process. For parametric option pricing we implement the multi-dimensional lattice-
schemes recommended by Boyle et al. (1989) (adjusted for dividend yields).

In the first application we price a European put option on the average of three
assets. Such an option is often embedded in the payoffs of investment accounts
like Guaranteed Investment Contracts (GICs), in order to improve payoff patterns.
We use the 3-dimensional lattice, and we derive (for the parametric fine model)
the average price of those provided by a 40-step and a 41-step lattice. For the
parametric coarse model the price is derived from a 10-step lattice. The difference
in computational intensity between the two is by a factor of 357 (option node
evaluations). We also use a simple ANN and the NOP-ANN to price these financial
options. We allow six variables to take five different values each, thus creating a
training set of 15625 for each of the fine and the coarse values. Input variables are
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the three underlying assets S1, S2 and S3, each with values equally spaced between
85 and 115, the riskless rate r with values between 0.02 and 0.06, all correlations
of the assets’ continuous rates of return ρ1,2, ρ1,3 and ρ2,3 (equal to each other in
order to keep the sampling space to manageable size) between −0.20 and 0.20, and
all standard deviations of the assets’ continuous rates of return σ1, σ2 and σ3 (again
equal to each other) between 0.10 and 0.50. The exercise price is X = 100, the
two dividend yields δ1 and δ2 are fixed at 0.03, and the time to maturity T = 3.00.
We also create a test set of 200 by drawing randomly and independently for the
six input variables from uniform distributions in the range of the values used in the
training set.

Our second application is in the context of real options pricing (see Trigeorgis,
1996). We are interested in the hard problems of partial investment reversibility like
the ones introduced by Brennan and Schwartz (1985) and Dixit (1989) in a perpetual
horizon for natural resource investment decisions with operating flexibility (early
exercise feature) and switching costs (path-dependency inducing feature) and one
stochastic asset price. Here though, we assume the harder case of a finite horizon
and of two assets. We assume that each underlying asset is perfectly correlated
with a traded one, and follows a Geometric Brownian motion process. We seek to
value a risky venture that offers the option to operate on the best of two outputs,
with the additional option of costly switching between operating and idle states.
For our parametric solution we implement a lattice scheme in two-dimensions.
This state-space is used to optimize the firm’s operations for every possible path
of the state-variable and for every possible past operating decision. Our solution
is equivalent to solving a multi-stage optimization problem by implementing a
forward-backward looking algorithm of exhaustive search. Here the operation can
be in an on (j ) or an off (i) state, with costly switching between the two. In the on
state operations provide the best of two underlying assets (S1, S2) for an operating
costX. Switching from state i to j occurs at a switching cost I i→j and there is also
a similar cost I j→i . When the state remains the same, cost I equals zero. The claim
value is a function of the net cash flows in each state plus the discounted expected
value of the claim at the next decision point. The model allows decisions at time zero,
at the maturity of the option, and twice in-between, thus the optimization problem
with exhaustive search is similar to a 3-stage stochastic programming model. We
implement a 24-step 2-D lattice for the fine and an 8-step 2-D lattice for the coarse
model. The difference in computational intensity between the two is by a factor of
1567 (option node evaluations). We allow five variables to take five different values
each creating a training set of 3125 for each of the fine and the coarse values. The
input variables are the two underlying assets S1 and S2, each with values equally
spaced between 85 and 115, the standard deviations of the assets’ continuous rates
of return σ1 and σ2 (equal to each other) between 0.10 and 0.50, the switching cost
I to get to active mode (from idle) between 5.00 and 25.00, and the switching cost
I to get to idle mode (from active) similarly between 5.00 and 25.00. The exercise
price is X = 100, the riskless rate r is fixed at 0.05, the two dividend yields δ1 and
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Table 1. Comparison between the hybrid NOP-ANN, the simple ANN, and the coarse NOP model

Error Hybrid NOP-ANN Simple ANN Coarse NOP
Measure

H 1 2 5 10 20 20

Example 1

mse(e)x104 (1.1) (0.79) (0.47) (0.24) (0.16) (1.5) (1.3)
1.0 0.85 0.45 0.21 0.14 1.0 1.3

mae(e)x102 (0.84) (0.72) (0.55) (0.38) (0.30) (0.97) (0.90)
0.84 0.75 0.54 0.33 0.27 0.79 0.95

max(|e|)x102 (4.4) (3.3) (2.4) (2.1) (2.1) (6.1) (4.7)
3.2 2.3 2.2 1.9 1.4 2.8 2.7

Example 2

mse(e)x104 (3.2) (1.1) (0.82) (0.39) (0.23) (2.7) (6.0)
2.5 0.9 0.74 0.60 0.21 1.8 4.1

mae(e)x102 (1.4) (0.85) (0.75) (0.47) (0.36) (1.2) (1.8)
1.3 0.79 0.72 0.59 0.35 1.1 1.6

max(|e|)x102 (8.1) (8.3) (7.4) (5.0) (2.7) (2.3) (11.4)
6.0 3.4 2.9 2.1 1.6 4.4 8.6

Note: The 1st and 2nd rows in each measure correspond to training and testing sets respectively.

δ2 are fixed at 0.05, the correlation of the assets’ continuous rates of return ρ1,2 is
fixed at 0.35, and the time to maturity T = 3.00. A test set of 200 is created with
random drawing similarly to the first example. In the next section we discuss the
results for both examples, and we suggest future extensions.

3 The numerical results and concluding comments

Table 1 shows the results obtained for both problems. For the hybrid network we
considered values for the number H of neurons in the hidden layer ranging from
1 to 20, while for the simple network we considered only the case H = 20. The
comparison measures are the mse (e): mean square error, the mae (e): mean absolute
error, and the max (| e |): maximum absolute error. For all cases, error is defined
as the difference between the option price obtained by the fine model, and that
obtained by the coarse or any of the two neural networks. The elements in brackets
correspond to the results obtained on the training data, and the rest correspond to
those obtained on the testing data. The testing error may in some cases be less than
the training error, due to the fact that the testing set is created with parameter values
restricted to be within the extreme parameter values used for training.
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It is clear by observing the testing sets statistics that the simple ANN is slightly
better than the coarse model, and that the hybrid neural network is superior to both
the coarse model, and the simple ANN. Examining the tables we can conclude the
following: A) The simple neural network, even with 20 neurons in the hidden layer,
did not give much better results that the ones obtained by the coarse model. B)
The results obtained by the hybrid network with only two neurons in the hidden
layer are slightly better than those obtained by the coarse model; this should be
expected, because in a way in the hybrid approach, we are taking the coarse model
as our base model. C) The results obtained by the hybrid neural network with 20
neurons in the hidden layer are superior to those obtained by the coarse model, and
to those obtained by the simple ANN. In real time applications the hybrid approach
is certainly justified.

The neural network approach proposed more recently by Bandler et.al. (1999)
based on space-mapping technology can also be applied in this work, as an alter-
native to the hybrid ANN. In this case, the partial derivatives of the coarse model
response with respect to the input variables will be required. In addition to alter-
native neural network approaches, for several option pricing problems we could
choose among more than one parametric methods beyond the lattice (i.e., numer-
ical solutions to differential equations, numerical integration, simulation). Evans
and Jones (2002) recommend a methodology (based on their Gamma Test) that can
provide the minimum sample size (of fine and coarse model evaluations) that is
adequate to use in the training set, and an estimate of the error; in addition, using
that information and after considering the computational burden of training with
those alternative parametric methodologies, we can choose the one that is the most
efficient to use for training (assuming this is an important consideration). Their
approach can also help optimize the neural network in respect to the number of
hidden neurons in a way that avoids the overfitting problem.
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