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A b s t r a c t - - A  nonlinear discrete time asset/liability model is developed for an insurance company 
selling investment policies with a guaranteed minimum rate of return and a fixed maturity date. The 
model accommodates time-dependent investment strategies and transaction costs. At time instants 
where portfolio rebalancing takes place, the model implements a constraint equation dictating that 
the total value of assets sold must be equal to the total value of assets purchased plus the total 
transaction costs. Asset transactions are thus self-financing and no additional cash is required. 
A procedure is proposed for computing time-dependent portfolio control strategies and the initial 
shareholders capital, such that given nonlinear financial constraints and requirements are satisfied. 
Such control strategies are called feasible portfolio control strategies. ~ 2004 Elsevier Ltd. All rights 
reserved. 

K e y w o r d s - - F e a s i b l e  portfolio control, Dynamic financial analysis, Discrete time asset/liability 
models~ Investment policies with a guaranteed minimum rate of return. 

1. I N T R O D U C T I O N  

This  work deals wi th  the  discrete t ime modell ing and control  of the  asset / l iabi l i ty  s t ruc ture  of  an 

insurance company.  T he  asset / l iabi l i ty  model  is defined at discrete t ime ins tants  kA,  k = 0, 1 , . . . ,  

where A is the  given basic t ime period, and t ime 0 corresponds to  the  present  t ime. 

At  t ime 0, the  insurance company  obtains  funds amoun t ing  to  L0 cur rency  uni ts  (CU) from 
sales of  investment  policies. These policies have a guaran teed  m i n i m u m  ra te  of  r e tu rn  g per basic 

t ime per iod A and a specified ma tu r i t y  date  N A ,  N > 0. T h a t  is, after a t ime per iod A, the  
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amount owing to the policyholders is at least (1 + g)Lo. The insurance company also obtains an 
initial amount of shareholders funds, E (n°m) CU. The total capital obtained from policyholders 

and shareholders, E (n°r") + L0, is invested in n assets consisting of stocks, bonds, foreign currency 
deposits, etc., and a risk-free asset. Future predictions of the rates of return of the above- 
mentioned assets are available. In order to simplify the presentation, the term "asset returns" is 
used in the sequel and is taken to mean "asset rates of return". 

A dynamic nonlinear asset/liability model is developed for the insurance company, extending 
the basic model given in [1]. The derived model is applied in the following manner. Given the 
vector of variables describing the asset/liability model at time 0, a predicted trajectory of asset 
returns, a sequence of portfolio rebalancing time instants, and a sequence of reference portfolio 
weights, u(k) E ~",  k = 0, 1 , . . . ,  N (a bold font is used to represent vectors and matrices). 
Then, the dynamic asset/liability model is solved to obtain the asset and liability accounts at 
time instants kA, k = 0, 1, 2 , . . . ,  N. The sequence of reference portfolio weights, u (0) , . . . ,  u(N), 
is referred to as a portfolio control strategy and is denoted by u. 

At the portfolio rebalancing time instants, asset transactions take place such that the actual 
portfolio weights equal the precomputed reference portfolio weights. At the rebalancing time 
instants the asset/liability model implements a constraint equation dictating that the total value 
of assets sold must be equal to the total value of assets purchased plus the total transaction costs. 
Asset transactions are thus self-financing and no extra cash is required. At time instants where 
no portfolio rebalancing takes place, the actual portfolio weights drift according to the predicted 
trajectory of asset returns. 

In this work, the following control problem is considered. Given the above-mentioned as- 
set/liability model, the predicted trajectories of asset returns and a sequence of portfolio rebal- 
ancing time instants, then, compute a portfolio control strategy u, and the initial shareholders 
capital E0 (n°m), such that given financial constraints and requirements are satisfied. The re- 
quirements include a regulatory constraint that has to be satisfied for all time instants kA, 
k = 0, 1 , . . . ,  N, and for all predicted trajectories of asset returns. Additional constraints in- 
clude lower bounds on risk-adjusted measures of policyholders and shareholders rates of return 
at time NA, and upper and lower bounds on E (n°m), where the bounds are expressed as frac- 

tions of L0. Note that E0 (n°m) is taken as a control parameter in order to satisfy the regulatory 
constraint. 

An important feature of the work presented here is that, instead of solving the above-mentioned 
problem by some optimal control technique [2], the problem is solved by using the concept of 
feasible control. The definition of feasible control and the computation of a feasible portfolio 
control strategy is as follows. 

FIRST. The portfolio control strategy is parameterized by a finite-dimensional vector p. 

SECOND. A penalty function that incorporates all the above-mentioned financial requirements 
and constraints is constructed. The penalty function is a function of the vector p and the 
initial shareholders capital, E0 (n°m). The penalty function, J0(P; E0(n°m)), is constructed in such a 
manner that it reaches the value of zero if and only if all the requirements and all the constraints 
are all satisfied. 

THIRD. A nonlinear programming algorithm [3] is applied on the vector space in which (p; E0 (n°m)) 

resides to bring the penalty function to zero. In other words, the equation J0(P; E0 (n°m)) = 0 
is solved for (p; E(n°m)), assuming that a solution exists. This yields a solution (p*; E0 (~°m)*) 
where p* parameterizes a feasible portfolio control strategy. 

Feasible control has been successfully employed in other applications, for example, guidance 
and control of a supertanker ship in constrained waters [4], closed-loop controller design methods 
for partially observable linear stochastic systems [5], and control of autonomous vehicles and 
robotic systems [6]. 



Feasible Portfol io Cont ro l  S t ra tegies  425 

Some works on asset/liability management (see, for example, [7-10]) use combinations of the 
following assumptions: linear asset/liability models, linear financial constraints and requirements, 
no transaction costs, and time-independent portfolio control strategies. To a large extent, this 
work is an extension of existing methods in asset/liability management. The approach proposed 
here is more flexible and employs a nonlinear asset/liability model incorporating transaction costs, 
nonlinear financial constraints and requirements, and a time varying portfolio control strategy. 

2. DISCRETE TIME ASSET/LIABILITY 
MODEL OF AN I N S U R A N C E  C O M P A N Y  

A discrete time asset/liability model of a hypothetical insurance company is derived in this 
section. 

Denote by r(k + 1) E ~R ~, the vector of predicted asset returns at the end of time interval 
(kA, (k + 1)A], k = 0 , . . . ,  N - 1. Consider the case where there are u possible predicted asset 
return trajectories, r(k) E N~, k = 1 , . . . ,  N. Each such trajectory is called here a scenario. Thus, 
the following notation is adopted: 

r(k;s) ,  k = l , . . . , Y ,  s E S = { s l , . . . , s v } ,  (1) 

for a predicted trajectory of asset returns; where s E S represents a scenario index. Note that  
asset I to asset n -  1 are risky assets while asset n is assumed to be a risk-free asset. The predicted 
returns have to satisfy the constraints, - 1  < ri(k; s) < C, i = 1 , . . . ,  n - 1, 0 < r,~(k; s) < C, for 
M1 k = 1 , . . . ,  N, and for all s E S, where C is some finite positive number. More details on the 
generation of predicted returns I for the risky assets are given in Appendix 2. 

The predicted rate of return for the risk-free asset is given by, 

r n ( k ; s ) = r f ,  k = l , . . . , Y ,  V s e S ,  (2) 

where r f  > 0 is a specified constant. The risk-free asset is assumed here to be a bank cash deposit 
account. 

A nonnegative weight Ps is assigned to each scenario s E S such tha t  

p._>o, v s c s ,  Z p s : I .  (3) 
sES 

The balance sheet of the insurance company consists of asset accounts and liability accounts 
(see Figure 1). 

Assets  Liabil i t ies  

1. I nves tmen t  1 : X 1  (kl s) i.  Pol icyholders  Liabil i ty:  L(k; s) 
2. Inves tmen t  2: X2(k;s) 2. Nomina l  Equity:  E(n°~)(k;s) 
3. I n v e s t m e n t  3: X3(k;  s) 3. Equ i ty  Reserve: E(reS)(k;s) 

n. Inves tmen t  n (cash):  Xn(k; s) 

Tota l  Assets:  A(k; s) Tota l  Liabil i t ies:  L(k; s) + E(n°m) (k; s) - t-E(res)(k;  s) 

F igure  1. Schemat ic  of t h e  insurance  company  ba lance  sheet  a t  t i m e  i n s t a n t  hA,  
k = 0 , 1 , . . . , V s E  S. 

1The  r e t u r n  or r a t e  of r e t u r n  of asset  i, i = 1 , . . . ,  n - 1, a t  t he  end of t ime  in terval  (kA,  (k -t- 1)A], is defined here 
by 

Pi(k + 1) - P~(k) 
P~(k) , i =  1 , . . . , n -  1, k----0,1 . . . . .  N - l ,  

where  P i (k )  is t he  price of asset  i a t  t ime  i n s t an t  kA,  k = 0, 1 , . . . ,  N,  i = 1 , . . . ,  n - 1. 
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The company assets consist of investments in stocks, bonds, etc., and a bank cash deposit ac- 
count. The market value of the investment in asset i, at time instant kA, is denoted by X¢(k;s) >_0 
and is recorded in asset account i, i = 1 , . . . ,  n, k = 0, 1 , . . . ,  N,  V s C S. The sum total of all the 
investments at time instant kA is denoted by A(k; s), 

A(k;s )=~Xi(k;s )>O,  k = 0 , 1 ,  .... N, Vs6S .  (4) 
i=1 

The company liabilities consist of the liability to all the policyholders, L(k; s), the nominal 
equity or nominal liability to all the shareholders, E ("°m) (k; s), and the equity reserve, E (res) (k; s), 
k=O, 1,...,N, VsE S. 

The constraint equation that is satisfied at all times is given by (see [11]) 

A(k;s)=L(k;s)+E(n°m)(k;s)+E(res)(k;s), k = 0 , 1 , . . . , N ,  VseS .  (5) 

Thus, given A(k; s), L(k; s), and E(n°m)(k; s), the equity reserve is computed using (5), 

E(r"S)(k;s)=A(k;s)-L(k;s)-E(n°m)(k;s), k=O, 1,...,N, VscS .  (6) 

The initial values of the liability accounts axe as follows: L(0; s) = L0 > 0, Vs C S, is the total 
capital received from policyholders, E (res) (0; s) = 0, V s E S, and E(n°m)(0; s) = ~0~(n°rn) > 0, 
V s E S, is the initial shareholders capital. 

Thus, the initial total capital available for investment is given by 

]~--~(nom) 
A(0; s) = Ao = Lo + ~o > 0, V s e S. (7) 

~(nom) has to be chosen such that  the following regulatory constraint (discussed Given L0, ~0 
later) is satisfied: 

K=~(nom) 
A 0 - L 0  > p ~ 0  > p ,  (8) 

L0 Lo 

where p is a specified constant, 0 < p < 1. 
The weight of investment i in the overall portfolio, wdk; s), is defined here by 

and 

A(k;s)' i= l , . . . , n ,  k = 0 , 1 , . . . , N ,  V s E S ,  (9) 

O<_wdk;s)<l , i= l , . . . , n ,  ~_~w~(k;s)=l, k=O, 1,...,N, VscS .  (10) 
i = l  

The rate of return of the investment portfolio at the end of time interval (kA, (k + 1)A] is given 
by 

R(V)(k+l;s)=~-~w~(k;s)r,(k+l;s), k = 0 , 1 , . . . , N - 1 ,  VsES.  (11) 
i = l  

Let u(k) E ~n, k = 0, 1 , . . . ,  N, be a given sequence of reference portfolio weights, satisfying, 

O<u~(k)<l, i - - 1 , . . . , n ,  ~ u ~ ( k ) = l ,  k = 0 , 1 , . . . , g - 1 ,  (12) 
i ~ l  

and where it is assumed that  u (N)  = u ( N  - 1). The sequence of reference portfolio weights is 
referred to as a portfolio control strategy, and is denoted by u. 
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It is assumed that  the initial portfolio weights vector w(0; s) satisfies, 

w(0; s) = u(0), V s e S. (13) 

Let 0 -  denote a time instant just  before time 0. At time 0- ,  the total  company assets consist of 
cash obtained from policyholders and shareholders. This implies that  w ( 0 - ;  s) = [0, 0 , . . . ,  0, 1] T , 
V s E S. At a time instant between 0 -  and 0, the cash is invested in n assets such that  at time 
0, (13) is satisfied. The transaction costs involved in this particular transaction are not accounted 
for in the dynamic model. Thus, Xi (0- ;  s) = 0, i = 1 , . . . ,  n - 1, X=(0- ;  s) = A0, A(0- ;  s) = A0, 
Xi(0;s)  = ui(O)Ao, i = 1,.. . ,n, A(0;s) = A0, Ys C S. 

The asset/liability model consists of a set of difference equations. Each difference equation can 
be used to calculate the value of a particular asset/liability account at t ime instant ( k + l ) A ,  given 
the value of the account and the values of some other variables at time instant kA, k = 0, 1 , . . . ,  
and, given a specific scenario s E S, and a portfolio control strategy u. 

The difference equation for the policyholders liability account, L(k; s), is given by 

VsES ,  k = 0 , 1 , . . . , N -  1, 

where 0 < A(k + 1) << 1, k = 0, 1 , . . . ,  N - 1, is a given time-dependent function representing the 
fraction of policyholders liability that  is paid out at the end of each time interval (kA, (k + 1)A], 
k = 0, 1 , . . . ,  N - 1, due to investment policies being surrendered. In addition, 0 < 0 < 1 is a 
specified fraction of the portfolio rate of return apportioned to policyholders. 

From (14), the cash amount, ¢l(k + 1; s), paid out to policyholders surrendering their policies, 

is given by 

¢1(k + 1;s) )~(k (15) 
VsES .  

This cash amount is withdrawn from the bank cash deposit account (Xn). 
If ~R(P)(k + 1; s) < g, then there is a shortfall amount, ~2(k + 1; s), given by 

(2(k+l;s)=L(k;s)max[O,g-OR(P)(k+l;s)],  k-=O, 1 , . . . , N - 1 ,  MsES. (16) 

In this work, it is assumed that  if OR(P)(k + 1; s) < g, then additional company shares are sold, 
with total value equal to the shortfall amount ¢2- The cash obtained is deposited in the bank 
cash deposit account (Xn) while the cash figure is added to the nominal equity account. 

The difference equation for the nominal equity, E(n°m)(k; s), is given by 

E(n°m)(k+l;s)=E(n°m)(k;s)+L(k;s)max[O'g-OR(P)(k+l;s)]' (17) 

E (n°m) (0; s) = E (n°m), V s E S, k = 0, 1 , . . . ,  N - 1. 

In this work, the total rate of return on shareholders capital at the end of time interval (0, kA], 
y(Sh)(k; s), is defined by 

A(k; s) - n(k; s) 
y(Sh)(k;s) = E(nom)(k;s ) , k = 0 , 1 , . . . , N ,  Ms 6 S. (18) 

The policyholders liability for the case where there are no policy surrenders during the time 
interval [0, NA] is denoted by L (n°s) (k; s), and the difference equation is given by 

V s 6 S ,  k = 0 , 1 , . . . , N -  1. 
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In this work, the total rate of return on policyholders capital at the end of time interval (0, kA], 
y(pol) (k; s), is defined by 

y(P°l)(k; s) -- L("°~)(k; s) 
L0 ' k = 0 , . . . , N ,  V s • S .  (20) 

Let (k + 1 ) - A  denote the time instant just before (k + 1)A, k -= 0, 1 , . . . .  The total investments 
at time instant (k + 1) -A,  A((k + 1)-;  s), is given by 

(1 + R(,)(k + 1; s)) A(k; s) - ¢1(k + 1; s) + ¢2(k + 1; s), A ((k + 1)-;  8) 

k = 0 , 1 , . . . , N -  1, V s • S .  
(21) 

The market value of investment i, i = 1 , . . . ,  n - 1, at time instant (k + 1) -A,  X~((k + 1)-;  s), is 
given by 

X, ((k + 1)-;  s) --- (1 + r,(k + 1; s))X,(k; s), 

-= (1 + ri(k + 1; s) )w,(k; s)A(k; s), (22) 
k=O, 1 , . . . , N - 1 ,  Y s E S ,  

i = l , . . . , n - 1 .  

The amount in the bank cash deposit account at time instant (k + 1) -A,  Xn((k + 1)-;  s), is given 
by 

Xn ((k + 1)-; s) = (1 + rf)Xn(k; s) - ¢1(k + 1; s) + ¢2(k + 1; s), 

=( l+r l )w~(k ; s )A(k ; s )_~ l (k+l ; s )+~2(k+l ; s ) ,  (23) 

k = 0 , 1 , . . . , N -  1, V s E S .  

In order to simplify the notation in (21)-(23), it has been assumed that  ~l(k + 1; s) = ¢1((k + 
1)- ;s ) ,  ¢2(k + 1;s) = ~2((k+ 1)- ;s ) ,  ri(k + 1;s) = ri((k + 1)- ; s ) ,  i = 1, . . . ,n,  n(P)(k+ 1;s) --- 
R(P)((k + 1)-;  s), k = 0, 1 , . . . ,  N - 1 ,  Vs • S. Also, note from (21),(23) that  it has been assumed 
that  withdrawals from and deposits into the bank cash deposit account (X~) incur no transaction 
costs. 

Since the amount ~1 is subtracted from the cash deposit account, (23), and thus also from 
total assets, (21), the following constraints are imposed here (see later): X~((k + 1)-; s) > 0, 
i = 1 , . . . ,  n, and A((k + 1)-;  s) > 0, for all k = 0 , . . . ,  N - 1, and for all s • S. 

Let TB, TQ be predefined sets of time indices satisfying 

TB c__ Zo = {1,2, . . . ,N),  TQ = Zo - TB. (24) 

If portfolio rebalancing is to take place just before time instant (k + 1)A, then (k + 1) e TB, 
otherwise (k + 1) E TQ, k = 0, 1 , . . . ,  N - 1. It is assumed here that  the rebalancing time instants 
divide the time horizon [0, NA] into equal consequtive time intervals. Difference equations for the 
portfolio weights and total investments are developed next for the case where portfolio rebalancing 
takes place and for the case where no portfolio rebalancing takes place. 

CASE 1. PORTFOLIO REBALANCING. k @ {0, 1 , . . . ,  N - 1} and (k + 1) • TB. 
In this case, at a time instant between (k + 1 ) - A  and (k + 1)A, the investment portfolio is 

rebalanced such that  the following is satisfied: 

w i ( k + l ; s ) = u i ( k + l ) ,  V s E S ,  i---- 1 , . . . , n .  (25) 

The value of investment i after rebalancing is given by 

Xi(k+l ; s )  = u i ( k + l ) A ( k + l ; s ) ,  Vs E S, (26) 
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where the total investments after rebalancing, A(k + 1; s), is determined below. The transaction 
cost for rebalancing investment i, 7i(k + 1; s), is defined here by 

,y,(k + 1; ~)= b, Ix,(k + 1; s ) -  x,  ((k + 1)-; ~)1, 
= b, l u , ( k  + 1)A(k + 1; s) - X,  ((k + 1)-; s) l, (27) 

VsES,  i = 1 , . . . , n ,  

where 0 <_ bi << 1, i = 1 , . . . , n .  
The following constraint equation is assumed here: 

n 

A(k + 1; s ) =  A ((k + 1)-; s) - ~ 7,(k + 1; s), 
i----1 

= A ((k + 1)-; s) - f i  bi lui(k + 1)A(k + 1; s) - Xi ((k + 1)-; s) l, 
i=1 

Vs E S, 

(28) 

where A ( ( k + l ) - ;  s), Vs e S, is obtained from (21). Equation (28) has to be solved for A(k+l ;  s) 
subject to the constraint (see (4)) 

A(k + l; s) > O, V s e S. (29) 

If (28),(29) have a solution, then (28) can be rewritten in the following manner, 

Z (X, ((k + l ) - ;  s) - X,(k + l; s)) = 
iE~)l (k-F1;s) 

(X,((k + l ) ; s ) -  X,((k + l)-;s)) 
iET)2(k÷l;s) 

n 

VseS, 
i = 1  

(30) 

where 

T ) l ( k + l ; s ) = { i e { 1 , . . . , n } l X i ( ( k + l ) - ; s ) - X d k + l ; s ) > _ O } ,  V s e S ,  (31) 

T ) 2 ( k + l ; s ) = { i E { 1 , . . . , n } l X , ( ( k + l ) - ; s ) - X , ( k + l ; s ) < O } ,  V s e S .  (32) 

T)l(k -F 1; s) is the set of indices of assets which were sold or kept constant while ~D2(k + 1; s) is 
the set of indices of assets which were purchased, V s E S. Equation (30) implies that the total 
value of assets sold equals exactly the total value of assets purchased plus the selling and buying 
transaction costs. Asset transactions are thus self-financing and no extra cash is required. 

CASE 2. No PORTFOLIO REBALANCING. k E {0, 1 , . . . ,  N - 1} and (k + 1) E Tq. 
In this case, no portfolio rebalancing takes place, implying that 

X , ( k + l ; s ) = X i ( ( k + l ) - ; s ) ,  VsES,  i = l , . . . , n .  (33) 

The difference equations for the total investments and the portfolio weights are 

A(k + 1;s) = A ((k + 1) - ; s ) ,  
X, ((k + 1)-; s) 

w,(k + l ; s ) =  A((k + l ) - ;s)  ' 

V s e S, (34) 

V s C S ,  i = l , . . . , n .  (35) 
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From (35),(22),(23), it follows that  the portfolio weights drift according to the predicted tra- 
jectories of asset returns. Note that  if TB = 0 then no rebalancing takes place, while if TB = 
(1, 2 , . . . ,  N} then rebalancing takes place at every time instant kA, k ---- 1, 2 , . . . ,  N. 

Thus, there are a total of m - 4 + n variables that  describe the asset/liability model. These 
variables can be grouped into a vector x(k; s) E ~m, as follows: 

x(k;s)----[L(k;s),E(n°m)(k;s),L(n°S)(k;s),A(k;s),wl(k;s),...,wn(k;s)] T 
k=O, 1,...,N, VsES.  

(36) 

Given L0, "-'0i~(n°m) and u(0) E !R ~, the initial values of the variables are computed from (7),(13), 

[ r  ~(nom) r i[?(nom) uT(o)] T x(O; S) = XO = L~O, ~0 , ~0, LO + ~o , v s e s. (37) 

The dynamic model is summarized below for convenience: 

L(k + 1;s)--[1-  A(k + 1)]L(k;s) (1 + m ~  [OR(P)(k + 1; s),gl) , 
i 

k = 0 , 1 , . . . , N -  1, L(O;s)=Lo, VsES,  
(38) 

E(n°m) (k q- 1; s) = E(n°m)(k; s) + L(k; s )max  [0,g - 0R(P) (k -{- 1; s ) ] ,  
(39) 

k = 0, 1 , . . . ,  N - 1, E (n°m) (0; s) ~(nom) = ~0 , Y s E S, 

n(n°s)(k --~ I;s) : n(n°s)(k;8) (1 -[-max [OR(P)(k -~ 1;8) ,g] )  , (40) 

k=O, 1 , . . . ,N -1 ,  L('°s)(O;s)=Lo, VsES,  

~(nom) 
A(0; s) = L0 + "~0 , V s E S, (41) 

n 

R(P)(k + 1; s) = ~--~wi(k; s)ri(k + 11 s), (42) 
i=1 

~i(k q- 1; S)~- )~(k q'- 1)i(]g; 8)(1 q-max [OR(P)(k q- 1; s ) , g l )  , 
(43) 

Vs E S, 

(2(k+l;s)=L(k;s)max[O,g-OR(P)(k+l;s)], k - - 0 , 1 , . . . , N - 1 ,  VsES,  (44) 

= (1 + R(P)(k + 1;s))  A(k;s)-( l (k  + 1 ; s ) + ¢ 2 ( k +  i ;s ) ,  A((k + 1) - ; s )  
(45) 

k = 0 , 1 , . . . , N -  1, VsES,  

X~ ((k + l)-; s) =(l+ri(k+l;s))wdk;s)A(k;s), k = 0 , 1 , . . . , N -  1; 

Vs E S, i = 1 , . . . , n -  1, (46) 

Zn  ((k + 1)- ;  s) = (1 + rf)w~(k; s)A(k; s) - (l(k + 1; s) + (2(k + 1; s), 

k = 0 , 1 , . . . , N -  1, Vs E S. (47) 

CASE 1. PORTFOLIO REBALANCING: k E {0, 1 , . . . ,  N - 1} AND (k + 1) e TB. 

w(0;s) =u(0) ,  Vs s, 

k = 0 , 1 , . . . , N -  1, VsES,  

k = 0 , 1 , . . . , N -  1, 

w,(k+l;s)=ui(k+l) ,  VsES,  i = l , . . . , n ,  (48) 

A ( k + l ; s ) = A ( ( k + l ) - ; s ) - ~ b i [ u i ( k + l ) A ( k + l ; s ) - X ~ ( ( k + l ) - ; s ) ] ,  V s E S ,  (49) 
i----1 
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subject to the constraint 
A(k  + l; s) > O, V s E S. (50) 

CASE 2. NO PORTFOLIO REBALANCING: k E { 0 , 1 , . . . , N - I }  AND ( k + l )  ETQ. 

A(k + 1;s) = A ((k + 1) - ; s ) ,  Vs E S, (51) 

Z, ( (k  + 1)-;s) V s e S ,  i= l , . . . , n .  (52) wi(k+ 1;s) = A((k + 1 ) - ; s ) '  

Note that  the model parameters, 

~(nom) TB, L0, ~0 , r i ,  g, 0, A(k), k = l , . . . , N ,  (53) 

and predicted trajectories of asset returns, (1), have to be specified. In this work, it is assumed 
that  the guaranteed minimum rate of return g is chosen to be a little less than the risk-free rate 

of return ry. 
Given an initial condition x0, (37), a scenario s E S, a set of parameters (53), and a portfolio 

control strategy, u(k) E ~ ,  k = 0, 1 , . . . ,  N. Then, the discrete time asset/liability model, (38)- 
(52), is solved to obtain x(k; s), k = 0, 1 , . . . ,  N, (36). 

For later use, the center of mass of a function ~b at time instant kA, M(~b; k), is defined by 

M(4); k) = Z p ~ d ? ( k ;  s), k = 0, 1 , . . . ,  (54) 
sES 

where ~b : {0, 1 , . . .  } x S -* ~mo is a bounded continuous function. 
The second moment about  the center of mass, V(¢;  k), is given by 

V(~; k) = ~p~(~b(k ;  s) - M(¢ ;  k))(~b(k; s) - M(~b; k)) T, 
s6S  

k = 0, 1, . . . .  (55) 

The function D is defined for the case m0 -- 1, and is given by 

D(¢; k) = [V(¢; k)] 1/2, k = 0, 1 , . . . .  (56) 

3. F O R M U L A T I O N  OF T H E  F E A S I B L E  
P O R T F O L I O  C O N T R O L  P R O B L E M  

The insurance company has to compute E (n°m) and a portfolio control strategy u(k) E ~ ,  
k -- 0 , . . . ,  N,  for the discrete time asset/liability model, (38)-(52), such that  the following 
constraints and requirements are satisfied: 

where y(Sh) and y(pOl) are given by (18) and (20), respectively, d (1), e (~) > 0, i = sh, pol, are given 
numbers, and 

X ~ ( k - ; s ) > O ,  i = l , . . . , n ,  A (k - ; s )>_do ,  k = 0 , 1 , . . . , N ,  V s E S ,  

X ~ ( k ; s ) > O ,  i = l , . . . , n ,  A(k; s) >_ do, k = 0 , 1 , . . . , N ,  V s E S ,  

A(k; s) - L(k; s) 
>_ p, k = O,1, . . . , N,  V s E S ,  

L(k; s) 

(59) 
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where 0 < do < Ao, p is a given number such that, 0 < p < 1, and 

_ ~ ( n o m )  < plLo, pLo < ~o - (60) 

where pl is a given number such that, p < pl < 1, and 

O<ui(k)_<l,  i-----1,...,n, k--O, 1 , . . . ,N ,  (61) 

n 

~ u i ( k )  = 1, k = 0 , 1 , . . . , N .  (62) 
i=1  

If it is assumed that  D(y(i); .), i = sh, pol, is a measure of riskiness of the total rate of return y(0, 
i = sh, pol, then constraints (57),(58) represent lower bounds on risk-adjusted center of mass 
values of y(sh) and y(pol), respectively. In this manner, both the interests of shareholders and 
policyholders are taken into account. 

The first two parts of (59) imply that all the investment accounts must be nonnegative, and 
that  the total assets must be greater than or equal to do for all time instants and for all scenarios 
s E S, thus limiting losses. The last part of (59) represents a regulatory constraint specifying 
that the ratio of accounting equity to policyholders liability has to be greater than p, for all time 
instants and for all scenarios s E S. Constraints (60) represent upper and lower bounds on the 
initial shareholders capital. Constraints (61),(62) are control constraints, (12). 

A portfolio control strategy satisfying constraints (57)-(62), will be called here a feasible port- 
folio control strategy. In order to compute a feasible portfolio control strategy, the following 
procedure is applied. 

FIRST. The portfolio control strategy is constructed in the following manner. Consider a sequence 
of vectors p~ = ~9il,Pi2,... ,Pin] T E ~n \ {0}, i = 1, . . .  ,v0, where Vo is a specified integer such 
that  1 _< Vo _< min(N, ao), ao = 1+ number of rebalancing time indices in the set TB. Let the 
vectors Iri = [~il,~ri2,..., Tri~] T, i = 1, . . .  ,Vo, be given by 

2 

PlJ j = l , . . . , n ,  i = l , . . . , V o .  (63) 7r,j - ~ p2j' 

j----1 

Thus, 

Let 

where 

0~Tr i j_~ l ,  j = l , . . . , n ,  i = l , . . . , V o ,  ~ r i j = l ,  i = l , . . . , v o .  (64) 
j = l  

{ ~rl, i f 0 < k < k o ,  

7r2, i f k o _ < k < 2 k o ,  
u(k) = 

: 

~r,o, if (Vo - 1)ko < k < min(N, voko), 

(65) 

ko -- ( iNt I N / ÷  1 ' - ,  ifif N is n°t  an i n t e g e r ' _ _ V O - - N  is an integer, (66) 

V0 V0 

int(x) is the integral part of X, and it is assumed that  u(N) = u (N - 1). It then follows that  the 
portfolio control strategy u satisfies the control constraints (61),(62). 
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SECOND. 

where 

Define the following penalty function: 

J0 (P; E(n°m)) --o/1G1 ( i  (y(sh); / )  _d(sh)n (y(Sh)]N),e(sh) B) 

N n N n 
Z al (X' ,°,Bl Z Z < (x'(k;s)'°'B) 

sES k=0 /=I sES k=O i=1 

N N 
Z al (A (k-; s), e0,,) + Z ai (A(k;,), e0, B) 

s6S k=0 sES k=0 
N 

nt-OL3 E E(~TI ( 'A(k;$) - L(k;s, ,p,B "{- o~4G1 (E(on°m),pLo,fllLo) 
sES k=O 

T P =  [Pl ,'"'PvT0] T 

B is a big positive number, ai > 0, i = 1 , . . . ,  4, are given numbers, and where 

{ ( ~ - c 2 )  2, i f ( > c 2 ,  
GI(~' Cl, C2) ---- 0, if ci _< ( _< c2, 

(( ci) 2, i f ( < c i ,  

~,Cl,C2 E ~}~, Cl <~ C2. 

THIRD. Compute a solution p* and E0 (n°m)* to the following equation: 

Jo (p* ;E  (n°m)*) ----0, 

(67) 

(68) 

(69) 

(70) 

assuming a solution exists. Clearly, if there is a vector p* and number E (n°m)* such that 
J0(P* ;E  (n°m)*) -- 0, then all the constraints and requirements are satisfied, and the correspond- 
ing control strategy, denoted by u*, is a feasible portfolio control strategy. 

Practically, the computation of (p* ;E0 (n°m)*) is conducted by solving an unconstrained min- 
imization problem on ~on+i .  Any suitable optimization algorithm can be applied iteratively 
until the penalty function J0, (67), is reduced to zero in double precision. At each iteration of 
the optimization algorithm and for given (p; E(n°m)), the computation of J0(P; E (n°m)) is done 
as follows. First, the control function u is computed via (65). Then, (38)-(52) are solved for 

all scenarios s E S. Once J0(p ;E  (n°m)) is obtained, the optimization algorithm then computes 

another vector p and number E (n°m) as part of its procedure. 
Due to the very complicated mapping (p; E ('°m)) -~ J0(P; E(n°m)), (67),(65), the question of 

existence of solutions to equation (70) will not be dealt with here. 
Since at time kA, k E {1, 2 , . . . ,  N - 1}, there will be updated information about predicted 

asset returns, the above-mentioned procedure can be applied to yield a feasible portfolio control 
strategy. This can be done at each time instant kA, k = 1, 2 , . . . ,  N - 1. 

4.  C O M P U T A T I O N A L  R E S U L T S  

The computational results are obtained using the following data. The basic time period A = 1 
month, N = 120, the time horizon is thus 120 months or 10 years. In addition, r f  = (3.5/12)%, 
0 = 0.85, A(k) = (0.02/12), k = 1 , . . . , N ,  g = (3/12)%, Lo = 1.0, do = 0.9. 

In this case, n = 12 asset indices were selected from approximately 45 indices plus the risk-free 
asset given in [1]. The selected indices consist mainly of Italian bond market indices, foreign 
currency cash deposits, international bond indices, etc. (see Appendix 1 for more details). 
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The above data  implies that  there are m = 4 + n = 16 variables in the discrete time as- 
set/liability model (36). 

The portfolio control strategy is parametrised by using v0 = 5 vectors Pi C ~ \ {0}, i = 
1 , . . . ,  v0. Thus, k0 = 24 and the values of the reference portfolio weights can change every 24 
months. 

It is assumed that  rebalancing takes place every month, implying Ts  = {1, 2 , . . . ,  N},  TQ = 0. 
This is done in order to prevent the portfolio weights from drifting away from the reference 
portfolio weights. The parameters appearing in the constraints, (57)-(62) are: d(0 = 2, i = 
sh, pol, e (Sh) = 2.0144, e (p°0 = 1.9284, p = 0.04, and Pl = 0.065. The transaction costs are 
computed using a commission rate bi = 0.005, i -- 1 , . . . , n  - 1, b~ -- 0. A total of ~ = 100 
scenarios are used in the computations, and P8 = l /v ,  Vs C S = { s l , . . . ,  sv}. See Appendix 2 
for a description of how these scenarios were generated. 

Thus, a grand total of nvo + 1 = 61 variables have to be computed, such that  constraints (57)- 
(62) are satisfied. The penalty weights used in (67) are: a~ = 1, i = 1, 2, 3,4. Note that 
equation (28) is solved by using a numerical procedure described in Appendix 3. 

The Nelder-Me~l search based optimization algorithm (Matlab optimization toolbox) was suc- 
cessfully applied to compute a solution to equation (70). Thus, all the constraints and require- 
ments have been satisfied. The computed feasible portfolio control strategy, u*, is plotted in 
Figures 2-5 and 

E (n°m)* ---- 0 .063177.  (71) 

Since portfolio rebalancing is performed at each time instant/cA, k = 1 , . . . ,  N, the computed 
reference portfolio weights are assigned to the actual portfolio weights, that  is, w(k; s) = u*(k), 
k = 1 , . . . , g ,  Vs e S (see (25)). 

Using the definitions in (54)-(56), the following quantities are computed. 

Group 1. M(L; k), M(A; k), and M(L(n°s); k), k = 0, 1 , . . . ,  N.  
Group 2. M(E(n°m); k), and M(E(res); k), k = 0, 1 , . . . ,  N. 
Group 3. D(L; k), D(A; k), and D(L(n°s); k), k = 0, 1 , . . . ,  N. 
Group 4. D(E(n°m); k) and D(E(res); k), k = 0, 1 , . . . ,  N. 

Plots of the quantities in Group 1 are shown in Figure 6, while plots of the quantities in Group 2 
are shown in Figure 7. In addition, plots of the quantities in Group 3 are shown in Figure 8, and 
plots of the quantities in Group 4 are shown in Figure 9. 

The quantities ~b (sh) , ~2 (p°l) a re  defined here by (see (57),(58)) 

The quantities ¢(~h)(k) and ~b(p.°i)(k), k = 0, 1 , . . . , N ,  are computed, (54)-(56), and plots of 
these quantities are shown in Figure 10. It turns out that  

¢(sh)(N) = 2.0144 > e (~h), ¢(P°0(N) = 1.9285 > e (p°0, N = 120. 

In addition, a variable Z is defined here by (see regulatory constraint (59)) 

Z(k; s) = A(k; s) - L(k; s) L(k; s) ' k = O, 1 , . . . ,  N, V s e S. (74) 

The quantities M(Z; k) and D(Z; k), k = 0 , 1 , . . . ,  N,  are computed, (54)-(56), and plots of these 
quantities are shown in Figures 11 and 12, respectively. It turns out that  

min ( min (Z(k; s))~ = 0.061276 > p = 0.04. (75) 
sES \k=O,.. . ,N / 



Feasible Portfolio Control  Strategies  435 

0.4 

0.3 

0.2 

0.1 

0 
0 

- -  l i n e  1 

- - line 2 
• - .  line 3 

I . . . . . . . . . . . .  

t 
I . 

I . . . . . . . . . . . .  . . . . . . . . . . . . . .  

I 

I I 1 I 

20 40 60 80 1 O0 
Time t in months. 
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Figure 6. Plots of M(L;k )  (line 1), M(A;k )  (line 2), M(L(n°S);k) (line 3), versus 
time t : kA, k = 0, 1,. . . ,N, A : 1 month, N = 120. 

The compounded portfolio rate of return up to the end of the time interval (0, kA], I + R  (¢) (k; s), 
k = 1, 2 , . . . ,  is defined here by 

k 
I + R ( C ) ( k ; s ) : E ( I + R ( P ) ( i ; s ) )  , k = 1 , . . . , N ,  VsES,  (76) 

i=1 

where R (p) is defined in (11). As above, using (54)-(56), the quantities M(R(~); k) and D(R(¢); k), 
k = 1 , . . . ,  N,  are computed, and plots of these quantities are shown in Figure 13. 

The annualized portfolio rate of return at the end of the time interval (0, kA], R(a) (k ;  s) ,  

k = 1, 2 , . . . ,  is defined here by 

[1 + R(a)(k; : 1 + s), 

=~. R(a)(k;s) = [I + R(C)(k;s)] 12/k- 1, 

k = l ,  2, . . . , N ,  V s E S, 

k = l , 2 , . . . , N ,  V s E S ,  
(77) 

y ] z2/k 
=# y(pol) (k; s) = (pol) (k; s) - 1, 

provided that  1 + R(C)(k; s) > 0, k = 1 , . . . ,  N, Vs E S. This condition has been satisfied for all 
the computations performed here. The quantities M(R(a); k) and D(R(a); k), k = 1 , . . .  ,N ,  are 
computed, (54)-(56), and plots of these quantities are shown in Figures 14 and 15, respectively. 
It turns out that  

The annualized policyholders rate of return at the end of the time interval (0, kA], Y(P°l)(k; s), 
k -- 1, 2 , . . . ,  is defined here by 

[ ]k/12 
1 +Y(P°l)(k;s)  = y ( p ° l ) ( k ; s ) ,  k ---- 1 , 2 , . . . , N ,  Vs e S, 

(7s) 
k = 1 , 2 , . . . , N ,  V s E S ,  
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provided that y(Pd)(k; s) > 0, k = 1 , . . . ,  N, Ys E S. Similarly, the annualized shareholders rate 
of return at the end of the time interval (0, kA], y(~h) (k; s), k = 1, 2 , . . . ,  is defined here by 

s ) =  [y sh>(k; s)] ' sk -- 1, k = 1 ,2 , . . . ,N ,  VsES, (79) 

provided that y(sh)(k; s) > 0, k = 1 , . . . ,  N, Ys E S. The conditions y(~)(k; s) > 0, k = 1, . . . ,  N, 
V s E S, i = sh, pol, have been satisfied for all the computations performed here. 

The quantities M(Y(P°I); k), M(y(sh); k), k = 1 , . . . ,  N, and D(Y(P°I); k), D(y(sh); k), k = 
1 , . . . ,  N, are computed, ( 54)-(56), while plot s of these quantities are shown in Figures 14 and 15, 

re,~pectively. 
It turns out that 

M (y(pol); N)  = 7.5395%, D (y(pol); N)  = 0.36828%, N = 120, 

1 , 0  

In addition, F (p°l) (k), F(sh)(k) are defined here by 

(see (78),(79)), and plots of these quantities are shown in Figure 16. 
The software for performing all the above computations is written in MATLAB. 

5. C O N C L U S I O N  

A nonlinear discrete time asset/liability model is developed for an insurance company selling 
investment policies with a guaranteed minimum rate of return and a fixed maturity date. 

The asset/liability model accommodates time-dependent investment strategies and transaction 
costs. At time instants where portfolio rebalancing takes place, the model implements a constraint 
equation dictating that the total value of assets sold must be equal to the total value of assets 
pllrchased plus the total transaction costs. Asset transactions are thus self-financing and no 
additional cash is required. At time instants where no portfolio rebalancing takes place, the 
actual portfolio weights drift according to the predicted trajectory of asset returns. 

Feasible control is applied to compute a time-dependent portfolio control strategy and the 
initial shareholders capital, such that the insurance company satisfies given financial constraints 
mid requirements. 

The proposed asset/liability model is flexible and can be adapted to model insurance com- 
panies with more complicated balance sheet structures, different types of investment policies, 
etc. Additional financial constraints and requirements can be added to the formulation of the 
feasible portfolio control problem. For example, constraints incorporating the operational objec- 
tives of the insurance company, regulatory requirements, constraints representing the interests of 
policyholders and shareholders, and other requirements. 

A P P E N D I X  1 

A total of 45 asset indices representing various asset sectors, mainly in Italy, and also interna- 
tionally, are given in [1]. The risk-free asset is taken to be a bank cash deposit account in Italian 
Lire. Twelve asset indices are selected (listed below) using the following procedure. 

1. Italian Government Bond Index 1-3 years (YRS-1-3). 
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2. Italian Government Bond Index 3-7 years (YRS-3-7). 
3. Euro cash deposit (CASH-EU). 
4. US Dollar cash deposit (CASH-US). 
5. German Government Bond Index (GVT-GM). 
6. Italian Government Bond Index (GVT-IT). 
7. French Government Bond Index (GVT-FR). 
8. Spanish Government Bond Index (GVT-SP). 
9. US Government Bond Index (GVT-US). 

10. UK Government Bond Index (GVT-UK). 
11. Sectional Corporate Bond Index: Life Insurance Industry (CRP-LFE). 
12. Risk Free Asset taken as an Italian Lire cash deposit account (IT-RiskFree). 

FIRST. The feasible portfolio control problem is solved for the case where all 45 indices plus the 
risk-free asset are used. In this case, the portfolio control strategy u is taken as constant over the 
time horizon [0, NA], that is, v0 = 1, k0 = N = 120 (see (65)). In this computation, use is made 
of the parameters given in Section 4, except for the parameters e (sh) ~- e (p°l) : 1.827, (57),(58), 
and Pl = 0.2, (60). 

It turns out that the reference portfolio weights of about seven asset indices are greater than or 
equal to 1%, while the rest are negligible with respect to 1%. The 12 indices listed above include 
most of the afore-mentioned seven indices with significant portfolio weights. 

A P P E N D I X  2 

Monthly index values of a total of n T  = 45 asset indices are available from the beginning of 
January 1990 to the beginning of January 2000 [1]. 

Assume that no,  no  <__ n T ,  of the available asset indices are selected. Number the selected asset 
indices 1, 2 , . . . ,  no, and denote the value of index i at time instant jA0 by Ii(j), i = 1 , . . . ,  no, 
j = 0 , . . . ,  No --- 120, where A0 = 1 month, j = 0 corresponds to the beginning of January 1990, 
and j = No corresponds to the beginning of January 2000. 

The rate of return of asset index i at the end of the one month time interval (j, j + 1], h~ (j + 1), 
is defined here by 

I~( j  + 1) - I~(j)  i = 1 , . . . ,  no,  j = 0 , 1 , . . . ,  N0 - 1. (82) hi(j + 1) = /~(j)  , 

Define the vectors h(j),  j -- 1 , . . . ,  No, 

h(j) = [hi ( j ) , . . . ,  hno (j)]T, y = 1 , . . . ,  N0. (83) 

It is assumed that h(j),  j = 1 , . . . ,  No, are measurements of a sequence of independent, 
identically distributed random vectors, each having an n0-variate Gaussian density, with mean 
vector, ttA, and covariance matrix, EA. Using this assumption, the measurements h(j),  j = 
1 , . . . ,No,  are employed to compute estimates for the mean vector, tt --- [ttl , . . . ,#no] T, and 
covariance matrix, ~ = [~k], as follows: 

No 
, ~ = G 1  ~ h , ( j ) ,  i = l , . . . , n 0 ,  (84) 

j = l  

No 
1 

~ , k  = --~O ~ h ~ ( j ) h k ( j )  - # i # k ,  i ,  k = 1, • . .  , no .  (85) 
j = l  

In this case, the first 11 asset indices listed in Appendix 1 are selected (no = 11). 
For a given scenario s E S, the predicted trajectory of asset returns, r(k;s) C ~ ,  k = 

1 , . . . ,  N = 120, n = no + 1 = 12, is generated by using the following procedure. 
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Consider k = 1, and employ a pseudorandom number generator to compute a sample of an 
(n--1)-dimensional random vector having a Gaussian density with mean vector,/~, and covarianee 
matrix, IE. This sample is assigned to the first (n - 1) components of r(1; s), while the risk-free 
rate is assigned to the last component, (2). The afore-mentioned procedure is then repeated to 
compute r(k; s), k = 2 . . . .  , N. 

Note that  if for any k E {1 , . . . ,  N}, and any i E {1 , . . . ,  n - 1}, r~(k; s) << - 1 ,  then additional 
samples are generated until the afore-mentioned condition does not occur. 

Thus, the total procedure described above is repeated in order to generate all the scenarios, 
r (k ;s )  E ~n, k = 1 , . . . , N ,  s = s l , . . . , s ~ .  

Other methods for generating scenarios are given in [1] and the references cited there. 

A P P E N D I X  3 

:For k E {0, 1 , . . . ,  N - 1} and (k + 1) E TB, and for a given s e S, the following equation, (28), 
has to be solved for A(k + 1; s), 

A(k + 1;s)= A ((k+ 1)- ;s)-  ~_bi lu,(k + 1)A(k + 1;s)- Xi ((k + 1)-;s)l, 
i = 1  

(86) 

subject to the constraint, (29), 
A(k + 1;s) > 0. 

Tile solution of (86) is obtained by using the following iterative algorithm: 

(87) 

n 

h (~+1) = A ( ( k  + 1 ) - ; s ) -  ~-~b~ u~(k + 1)h(~) -X~((k  + 1)-;  s) , 
i = l  

j = 0, 1, 2 , . . . ,  min[jmax, Jc], 

(88) 

where 

h (°) = A ( ( k +  1 ) - ; s ) ,  

jmax > 0 is a given integer, and j~ is the iteration number where the following is satisfied: 

(89) 

h U°+I) - h Uc) < e, 0 < e < < l .  (90) 

If the convergence criterion (90) is satisfied for jc <_ jm~x and 

h (jc+l) > 0, (91) 

then hUb+l) is taken to be the solution of (86), that  is, 

A(k + 1; s) = h (jo+l). (92) 

T:he following parameter values are used: jmax = 1000, e = 10 -20. 

It turns out that  the convergence criterion (90) is satisfied for jc << Jmax, and (91.) is met for 
all the computations performed in Section 4. 
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