
Pricing Options on Scenario Trees∗

Nikolas Topaloglou, Hercules Vladimirou† and Stavros A. Zenios

HERMES European Center of Excellence on Computational Finance and Economics
School of Economics and Management

University of Cyprus
P.O. Box 20537, CY-1678 Nicosia, Cyprus

To appear in Journal of Banking and Finance (Ref. JBF 9216, Accepted 14/03/2007).

Abstract

We examine valuation procedures that can be applied to incorporate options in scenario-
based portfolio optimization models. Stochastic programming models use discrete scenarios to
represent the stochastic evolution of asset prices. At issue is the adoption of suitable procedures
to price options on the basis of the postulated discrete distributions of asset prices so as to ensure
internally consistent portfolio optimization models. We adapt and implement two methods to
price European options in accordance with discrete distributions represented by scenario trees
and assess their performance with numerical tests. We consider features of option prices that are
observed in practice. We find that asymmetries and/or leptokurtic features in the distribution
of the underlying materially affect option prices; we quantify the impact of higher moments
(skewness and excess kurtosis) on option prices. We demonstrate through empirical tests using
market prices of the S&P500 stock index and options on the index that the proposed procedures
consistently approximate the observed prices of options under different market regimes, especially
for deep out-of-the-money options.

JEL classification: G12, G13, C6, C00.
Keywords: Stochastic programming; Pricing under discrete distributions; European options; Risk-neutral
probabilities; Effect of higher-order moments.

1 Introduction

Stochastic programs provide an effective framework for modelling diverse financial management prob-
lems. The deployment of stochastic programming models in practice is made possible due to flexible
modelling systems, algorithmic developments for large-scale stochastic programs and advancements
of computing technology. As a result, stochastic programs are increasingly gaining acceptance as vi-
able tools for addressing diverse financial planning problems under uncertainty. Recent advancements
of models and applications of stochastic programs for portfolio management and related problems
are documented, for example, in [42, 15, 41, 38, 39, 36, 37].

Stochastic programs are gaining popularity because of their flexibility and several advantageous
features. Multistage stochastic programs provide an effective basis to model dynamic portfolio man-
agement problems. They can incorporate practical considerations such as portfolios of many assets,
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transaction costs, liquidity, trading and turnover constraints, limits on holdings in individual assets
or groups, as well as additional managerial and regulatory requirements that can be modelled as
constraints on the decision variables. Moreover, stochastic programs can accommodate different
objective functions to represent the decision maker’s risk bearing attitude and the primary decision
goals. These features provide substantial leeway in modelling practical financial planning problems.

In dynamic stochastic programs uncertainty in input parameters is flexibly modelled in terms of
discrete distributions. The discrete distributions can capture the joint co-variation of the random
variables and are represented by means of a scenario tree that depicts the progressive evolution of the
random variables. The models are not restricted by rigid distributional assumptions. Asymmetric
and heavy-tailed distributions of random variables, that are often implied by financial times series,
can be accommodated in scenario-based models.

These flexibilities of stochastic programs make them suitable tools for risk management appli-
cations. It is natural to consider, in the context of stochastic programs, appropriate instruments
that can serve the risk management function. Derivatives are well-suited for this purpose. By con-
struction, options have asymmetric payoffs that can cover against adverse price movements of the
underlying security. Combinations of options can help shape a desired payoff profile over the range
of possible movements in the price of the underlyings. Consequently, the incorporation of options in
portfolio optimization models should lead to improved risk management tools.

It is not our intention to provide a comprehensive review of the extensive literature on option
pricing; we only cite some representative works.

In their seminal work, Black and Scholes [5] derived explicit pricing formulas for both call and
put options based on the assumption that stock prices follow a geometric Brownian motion. Several
empirical studies (e.g., Rubinstein [31, 32]) showed that the B-S model misprices deep out-of-the
money options. The volatility estimates in the Black-Scholes formula, implied by market prices
of options and their underlying securities, differ across exercise prices and maturities and form
“smile” patterns, violating the constant volatility assumption. Empirical estimates of the risk-neutral
probability density of asset returns reveal (often negatively) skewed and leptokurtic distributions, in
contrast to the log-normal distribution assumed in the Black-Scholes model.

Dempster and his collaborators [9, 10, 11] developed, implemented and tested procedures based on
linear programming for pricing American and exotic options in the Black-Scholes framework. Their
procedures exploit the problem structure in specializing operations of the revised simplex algorithm
to solve efficiently finite difference approximations of the Black-Scholes differential equation.

Another option pricing approach infers the risk-neutral distribution for the price of the under-
lying security. The observed financial time series and risk premia imply a risk-neutral probability
measure that can be used to price any derivative as the expected discounted value of its future payoff.
While the physical (empirical, subjective) and risk-neutral probability measures are related, they are
identical only in the case of zero premia on all relevant risks factors. A fundamental theorem of asset
pricing states that in the absence of arbitrage there exists some pricing kernel that can reconcile
the two measures. This result prompted the studies by Aı̈t-Sahalia and Lo [1], Jackwerth [19], and
Rosenberg and Engle [30] regarding the characteristics of the pricing kernel.

An alternative approach to deal with nonconstant volatility was proposed by Rubinstein [32],
Jackwerth and Rubinstein [20], and in a series of papers by Derman and Kani [12], Derman et
al. [13] and Dupire [16]. Instead of imposing a parametric function for volatility, they approximate
the structure of asset prices with binomial or trinomial lattices which are calibrated on the basis
of market prices. Rubinstein [32] showed how to compute the implied distribution using quadratic
programming; Jackwerth and Rubinstein [20] generalized this approach using nonlinear programming
to minimize four different objective functions.

To incorporate options in scenario-based portfolio optimization models the options must be priced
consistently with the price scenarios for the underlying securities. The following key issue needs to
be resolved. Common option pricing methods typically rely on specific assumptions regarding the
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stochastic process of the underlying security’s price. On the other hand, stochastic programming
models afford the flexibility to cope with general discrete distributions. It is often desirable, and
even necessary, to capture in the scenario sets skewness and excess kurtosis features that are often
observed in market data. Hence, the postulated scenarios for the asset prices do not necessarily
conform to distributional assumptions on which popular option valuation methods are based. As
a result, these option pricing methods cannot be employed if the options are to be incorporated in
stochastic programming models that use a different representation of uncertainty for the prices of the
underlying assets. Otherwise, the models can give rise to arbitrage opportunities and imply spurious
profits. Appropriate option pricing procedures must be adopted to ensure internal consistency of the
stochastic programming model.

This paper aims to adapt, implement and empirically validate appropriate methods to price
options in accordance with discrete scenario sets of asset prices. We confine our attention to European
options and propose two procedures to price the options consistently with the discrete distributions
of a scenario tree. The adopted pricing procedures account for the statistical characteristics of asset
returns (including skewness and kurtosis) as reflected in their empirical distributions. A key concern
is to ensure that the scenarios of asset prices, in conjunction with the resulting option prices, satisfy
the fundamental no-arbitrage condition.

In the first approach, we determine an equivalent risk-neutral probability measure from the
physical probability measure that is associated with the postulated price outcomes on the scenario
tree. For European options, the critical input for valuation is the distribution of the underlying
asset’s price (and, consequently, the option payoff) at the time of the option’s maturity. In our
construction, the discrete support of this distribution is represented by a corresponding subset of
nodes of the scenario tree. Once the risk-neutral probabilities of these nodes (states) are determined,
pricing the options is straightforward. The price of a European option is the expectation of its
discounted payoff. The expectation is taken, under the risk neutral probability measure, over the
nodes of the scenario tree that represent the discrete support of asset prices at the option’s maturity.

The second approach is based on a series expansion of the distribution of asset log-returns. The
series expansion allows to analytically compute the option price as a sum of three parts: the Black-
Scholes price and two additional adjustment terms that account for skewness and kurtosis, as those
are reflected in the scenario sets of asset prices.

The proposed procedures can price European options at any node of the scenario tree, thus
allowing transactions with options at any decision stage of a multi-period portfolio optimization
model. These approaches are not restricted by explicit assumptions for the distribution of the
underlying security’s price; in principle, they can be applied to any arbitrary discrete distribution.
Of course the appropriateness (i.e., satisfaction of no-arbitrage conditions) and the effectiveness of
the methods to properly price options needs to be verified in each case.

We describe implementations of the proposed pricing procedures and assess their viability and
performance through extensive numerical tests using market data. In the context of these tests,
we generate scenarios of asset prices using a moment matching method. The pricing procedures,
however, are not restricted to this specific scenario generation method. We verify numerically that
the scenarios of asset prices satisfy the fundamental no-arbitrage condition.

We compare prices computed with the proposed procedures against observed market prices of
European options on the S&P500 stock index. We also compute estimates of the option prices with
the Black-Scholes method as a reference point in comparisons. The proposed procedures produce
option prices that are closer to observed market prices than the corresponding B-S prices, especially
for deep out-of-the-money (OTM) options. The results show that the returns of the S&P500 index
during the time window of the numerical tests cannot be closely approximated by a log-normal
distribution as is assumed in the B-S framework. This assumption is often violated by market prices
and, as expected, the B-S estimates of option prices are not accurate under these circumstances.

Out-of-the-money put options are particularly suitable for risk management purposes as they
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insure against severe adverse movements in the price of the underlying asset. Our results confirm
that the Black-Scholes formulas systematically (and substantially) overprice deep OTM call options
and underprice deep OTM puts. This observation was a primary motivation for our study that seeks
to adapt appropriate methods that can reliably price options in accordance with general discrete
distributions of asset prices, so as to incorporate options in stochastic optimization models geared
towards risk management applications.

We demonstrate through empirical tests that the pricing of European options based on scenario
trees, that capture asymmetries and heavy tails of the empirical distribution of asset prices, is a viable
valuation alternative. When no-arbitrage conditions are met by the price scenarios the computed
option prices are quite close to observed market prices.

The paper is organized as follows. In section 2 we discuss the structure of the scenario tree
that models uncertain asset prices; we refer to the scenario generation procedure and numerical
tests to verify that the price scenarios are arbitrage-free. In section 3 we present two procedures for
pricing options based on the scenario tree. In section 4 we investigate the effects of higher moments
of the underlying asset’s distribution on the resulting option prices. We also examine features of
option prices that are typically observed in practice and give rise to the volatility smile; these can
be explained, at least partly, by negatively skewed risk-neutral distributions that can be captured
by the proposed approaches. In section 5 we compare option prices on the S&P500 index computed
with the proposed procedures to observed market prices. Conclusions are summarized in section 6.

2 Representation of Stochastic Asset Prices on a Scenario Tree

In stochastic programming models for portfolio management the dynamic evolution of asset prices
is represented in terms of a scenario tree, of the form shown in Figure 1. The root node corresponds
to the current state (at time t = 0) from which a number of branches emanate. Each branch leads
to an immediate successor node that represents an outcome that the prices of all assets jointly
take at the next decision time, with an associated probability. The same principle applies to each
subsequent state, corresponding to a distinct node of the scenario tree. For each node, the collection
of immediate successor nodes models the conditional discrete distribution of asset prices in the
next time period, contingent on their common predecessor node. Decisions (i.e., potential portfolio
revisions) are considered at the nodes (states) of each time period t = 0, 1, ..., T . Each node of the
tree corresponds to a joint plausible outcome of the asset prices at the respective time period; thus,
correlations between asset prices can be captured in the scenario generation process and reflected on
the scenario tree.

We define the following notation:

N the set of nodes of the scenario tree.
n ∈ N a typical node of the scenario tree (n = 0 denotes the root node at t = 0).
NT ⊂ N the set of leaf (terminal) nodes at the last period T that uniquely identify the

complete set of scenarios over the planning horizon. For each time period, a scenario
corresponds to a path from the root to a distinct node at the respective period.

p(n) ∈ N the unique predecessor node of node n ∈ N .
Mn ⊂ N the set of immediate successor nodes of node n ∈ N \NT . This set of nodes models

the discrete outcomes of the random asset prices at the respective time period,
conditional on the predecessor node n.

Sn
i the price of asset i, i = 1, . . . , I, at node n ∈ N .

πn the unconditional probability for the outcome (state) associated with node n ∈ N ,
as resulting from the scenario generation process. Obviously,

∑
n∈NT

πn = 1 and,
recursively, πn =

∑
m∈Mn

πm , ∀n ∈ N \NT .

The scenario tree typically includes many nodes, and it is not binomial as shown in Figure 1
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Figure 1: Illustration of a scenario tree.

simply for illustration purposes. The tree reflects, in terms of conditional discrete distributions, the
dynamics of a stochastic process for the asset prices. Fine representations of the stochastic price
process imply an increasing number of outcomes (branching factor from nodes) at each stage. This
has a direct impact on the size of the resulting stochastic program and the required solution effort. A
balance is needed between a fine representation of the stochastic price process and the computational
complexity of the associated stochastic program.

The topic of scenario generation for stochastic programs is a subject of active research. Var-
ious approaches have been proposed, including judicious sampling or discretization of continuous
stochastic processes, simulation and clustering, econometric models, and even the incorporation of
subjective (expert) forecasts. Dupačová et al. [14] review scenario generation methods. There is
no universal choice for a scenario generation method. Clearly, the set of scenarios must adequately
approximate the stochastic process governing the underlying random variables. Thus, the suitability
of a scenario generation method for a particular application should always be checked by the modeler
before adopting any particular approach. Kaut and Wallace [25] discuss procedures to numerically
evaluate scenario sets for stochastic programs.

We apply a moment-matching scenario generation method developed by Høyland et al. [18].
The method generates scenarios so that key statistics of the random variables match specified target
values. We match the following statistics: the first four marginal moments (mean, variance, skewness,
and kurtosis) of asset returns and, additionally, their correlations — in the case of multi-asset
problems. We estimate the target values to be matched on the basis of historical market data.

A necessary condition for the asset price scenarios is the no-arbitrage requirement. The presence
of arbitrage in the outcomes represented by the scenario tree would lead to solutions of the portfolio
optimization program that imply spurious profits. Such solutions are of no practical usefulness. The
absence of arbitrage is also a fundamental condition for option pricing. Klaasen [27] describes the
conditions that asset price scenarios must satisfy to be consistent with financial asset pricing theory
(i.e., to be arbitrage-free and consistent with observed market prices).
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We applied the tests in Klaassen [28] to numerically verify that the asset price scenarios used in
the empirical tests are arbitrage-free. The tests require the solution of two linear programs using
as inputs the asset price outcomes of the scenario tree and having as decision variables the asset
allocations at each node of the scenario tree. An analogous stochastic linear program to test for the
absence of arbitrage in asset prices on a scenario tree is explained in Zhao and Ziemba [40].

The purpose of the tests is to ensure that the asset price scenarios do not include any “free lunch.”
That is, to verify that there is no feasible costless, self-financing policy (including short sales) that
can generate a riskless profit (i.e., a non-positive initial endowment that can result in non-negative
payoffs at all terminal nodes of the scenario tree, and a strictly positive value at, at least, one terminal
state). Such a solution would imply the attainment of riskless profit (arbitrage). For each scenario
set that we used in the empirical analysis we numerically confirmed that its discrete distribution of
asset prices indeed did not contain any “free lunch” opportunities.1

Our primary motivation for this study is to develop suitable means for incorporating options
in dynamic (multi-stage), scenario-based stochastic programming models for portfolio management.
This would involve decision variables allowing transactions on options at each decision stage (i.e.,
at each node of the scenario tree). We present next two approaches to price options on a scenario
tree. Both procedures can price European options at any node of the scenario tree, in accordance
with the postulated discrete distribution of asset prices represented by the subtree emanating from
the node of interest.

3 Pricing Options on a Scenario Tree

Say we want to price a European option with term (maturity) τ periods at a non-terminal node
n0 ∈ N \NT of the scenario tree. The underlying’s price at the time of the option’s valuation is that
associated with node n0. The expiration date of the option coincides with a stage of the scenario tree.
The essential input to price this option is the distribution of the underlying asset’s price at the option’s
maturity, conditional on node n0. Consider the subtree with depth τ rooted at node n0 (highlighted
in Fig. 1). The leaf nodes, Lτ , of this subtree represent the desired conditional distribution (i.e., the
possible states of the underlying’s price at the option’s maturity date, conditional on the price being
at state n0 at the valuation date).

The discrete support of this distribution of the underlying’s price is Ω = {ωn = Sn : n ∈ Lτ}.
The corresponding conditional (on node n0) probabilities of the physical distribution are P = {pn =
πn/πn0 : n ∈ Lτ}, where πn was defined as the unconditional probability mass for node n.

In what follows, references to the underlying’s stochastic price at the option’s maturity, to the
distribution of this price, to its discrete support or to the corresponding probabilities, always imply
that the respective quantities are conditional on the underlying’s price being at node n0 on the
option’s valuation date.

We use the following notation:

τ the term of the European option priced at state n0.
S0 the price of the underlying asset at node n0 (i.e., at the root node of the subtree); this is

deterministic for the associated option pricing case.
S̃τ the random price of the underlying asset at the expiration date of the option, conditional

on the price S0 at the option’s valuation date. This random variable takes values in the
discrete set Ω.

1In fact, we ran the tests for each subtree on which we carried out option pricing calculations. We ran the tests
not only with the assets as the available investment outlets (decision variables of the linear programs), but also after
incorporating the options — priced with the proposed procedures — in the optimization programs. In all cases we
confirmed the absence of “free lunches” in the sets of asset price scenarios used in the numerical experiments.
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Sn the price of the underlying asset at node n ∈ Lτ of the subtree. These prices and their
respective probabilities over all leaf nodes, Lτ , of the subtree represent the discrete,
conditional distribution for the asset’s price at the option’s expiration date.

rf the riskless rate applicable during the lifetime of the option.
K the exercise price of the option.
P the physical probability measure for the discrete conditional distribution of the

underlying’s price at the option’s maturity.
P̄ an equivalent risk-neutral probability measure for the same discrete distribution.

We consider two approaches for pricing options on scenario trees of asset prices. In the first case we
determine an equivalent risk-neutral probability measure over the discrete outcomes (Sn, n ∈ Lτ )
of the asset’s price. The risk-neutral probabilities are obtained through a transformation of the
physical measure on these outcomes that applies a change of measure, while also satisfying the
necessary martingale condition.

3.1 Method 1: Determining Risk-neutral Probabilities

In the no-arbitrage setting the price of a European option is computed as the expectation, with
respect to a risk-neutral measure, of its discounted (by the riskless rate) payoff. Harisson and
Kreps [17] applied this valuation principle and introduced the notion of a pricing functional which
operates on the payoff of a contingent claim. Hence, we need to determine an equivalent risk-neutral
probability measure for the discrete support, Ω, of the underlying’s price at the option’s expiration
date.

A basic theorem in risk-neutral valuation (see Jacod and Shiryaev [21] for the theorem in discrete
time) states that a model of asset prices is arbitrage-free iff there exists a probability measure P̄
(the risk-neutral measure) under which the discounted process of the asset prices is a martingale.
The martingale condition requires that over a time interval the expected, under the risk-neutral
measure P̄ , return of an asset is equal to the riskless return over the same interval (e.g., Neftci [29],
chapter 15). That is,

EP̄ [e−rf τ S̃τ |S0] = S0 . (1)

Consequently, an equivalent martingale measure over the discrete support, Ω, of asset prices must
satisfy the following system of linear equations and inequalities:∑

n∈Lτ

p̄nSn
i = S0i(erf )τ , i = 1, . . . , I, (2)

∑
n∈Lτ

p̄n = 1 , (3)

p̄n > 0 , ∀n ∈ Lτ . (4)

The equality (3) ensures that P̄ = {p̄n : n ∈ Lτ} is a proper measure, and the inequalities (4) ensure
the required equivalence between the physical, P , and the risk-neutral, P̄ , probability measures.

Equivalence between the two measures requires that they both assign nonnegative probability
to the same domains (i.e., P (Z) > 0 ⇔ P̄ (Z) > 0, P (Z) = 0 ⇔ P̄ (Z) = 0, ∀Z ⊂ Ω). In our
setting, both measures are defined over the same discrete set, Ω, of asset price outcomes and (4)
requires that the risk-neutral measure should assign positive mass, p̄n, to each atom of Ω (i.e., to each
postulated conditional outcome of asset prices over the leaf nodes Lτ of the subtree on which pricing
is carried out). Harisson and Kreps [17] (Theorem 2) indicated that asset price models that admit
no “free lunches” have an equivalent martingale measure. As we discussed in the previous section,
we numerically verified that the asset price scenarios we use in the empirical tests of this study do
not contain any “free lunches.” Consequently, there exists an equivalent risk-neutral (martingale)
measure on the set of asset price scenarios.
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In typical problem instances, the necessary martingale conditions (2)–(4) alone are not sufficient
to determine the required risk-neutral probabilities because this linear system is usually underde-
termined. For this system to be completely determined — so as to result in a unique martingale
measure, — the number of linearly independent securities, I, must be equal to the number of price
outcomes |Lτ |− 1. This is not usually the case in practical problem instances; typically, the number
of price outcomes specified on a scenario tree to approximate the distribution of random prices is
much larger than the number of assets considered in a problem.

Hence, we resort to developments in a market equilibrium approach to option pricing in order to
supplement the necessary martingale conditions and determine the implied risk-neutral probabilities
for the discrete price outcomes.

A common assumption in equilibrium valuation models is that the market participants can be
aggregated into a representative agent. The utility function of the representative agent is a matter of
choice among certain admissible classes. An appropriate choice is one that represents the aggregate
market well; Jackwerth [19] suggests “a power utility function of moderate risk aversion.”

In equilibrium, the relationship between the physical and the risk-neutral probability measures
through a pricing kernel leads to the following expression for the current price of an asset whose
random value at time τ is S̃τ :

S0 = (e−rf )τEP [ξS̃τ ] , (5)

where ξ is the pricing kernel (stochastic discount factor) and EP [.] denotes the expectation operator
with respect to the physical probability measure P . Explicit dynamic modelling of the joint stochastic
process of asset returns and the pricing kernel can be found in the consumption-based equilibrium
asset pricing literature (see, Aı̈t-Sahalia and Lo [1], Jackwerth [19], Rosenberg and Engle [30] for
applications to derivatives pricing).

Bakshi et al. [2] developed a method for relating the physical and risk-neutral probability measures
through a pricing kernel. We follow their methodology, which we adapt to the case of a discrete
distribution of asset returns. In a continuous setting, the equilibrium condition (5) relates the
physical and the equivalent risk-neutral measure as follows:

S0 = (e−rf )τEP [ξS̃τ ] = (e−rf )τ

∫
Ω

S̃τ (ω)ξ(ω)dP (ω) = (e−rf )τ

∫
Ω

S̃τ (ω)dP̄ (ω) , (6)

implying

ξ(ω)dP (ω) = dP̄ (ω) ⇒ dP̄ (ω)
dP (ω)

= ξ(ω) a.s. (7)

The physical and the risk-neutral probability measures P and P̄ , respectively, are defined on a
measurable space (Ω, F ).

This result takes a special form when the support of the asset price distribution is a finite discrete
set, as is the case with the discrete outcomes Ω = {ωn = Sn : n ∈ Lτ}, we use to represent the
distribution of the stochastic asset price S̃τ . In this case, F comprises all subsets of Ω. In the discrete
distribution setting, the analogue of (7) is

ξ(ωn) =
P̄ (ωn)
P (ωn)

⇒ P̄ (ωn) = ξ(ωn)P (ωn), ∀ωn ∈ Ω.

Bakshi et al. [2] derived a transformation between the physical and the risk-neutral probabilities.
This transformation, specialized for the case of a discrete support, takes the form

p̄n =
EP [ξ|Sn]pn∑

n∈Lτ
EP [ξ|Sn]pn

, n ∈ Lτ , (8)

where ξ is a general change-of-measure pricing kernel.
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Under the common hypothesis of a power utility function of a representative market agent, the
stochastic discount factor (pricing kernel) can be specialized to

EP [ξ|Sn] = (Sn)−γ = e−γ ln(Sn), n ∈ Lτ , (9)

where γ is the coefficient of relative risk aversion.2 Substituting (9) in (8) and dividing both the
denominator and the numerator by S−γ

0 we obtain

p̄n =
e−γln(Sn/S0)pn∑

n∈Lτ
e−γln(Sn/S0)pn

=
e−γRn

pn∑
n∈Lτ

e−γRnpn
, n ∈ Lτ , (10)

where Rn = ln(Sn/S0) is the return of the underlying asset at leaf node n ∈ Lτ , conditional on the
initial price S0.

The transformation in (10) is intended to produce a risk-neutral measure, by “exponentially
tilting” the physical measure, consistent with equilibrium principles. This transformation depends
on a risk aversion parameter γ. We empirically estimate the value of this parameter using market
prices of options and the underlying security. 3

The estimated value of the parameter γ may be affected by measurement and estimation errors.
We estimate the value of this parameter using observed option prices at a recent date, preceding
the date of the analysis, and then use the same value to price options at stages of the scenario tree
that correspond to later periods. The postulated conditional discrete distributions of asset returns
at subsequent nodes of the scenario tree can, potentially, be different from the distribution that was
used for the parameter estimation.

Hence, we explicitly impose the necessary martingale conditions in the determination of the risk-
neutral probabilities before carrying out option pricing computations at a node n0 ∈ N \NT of the
scenario tree. We obtain the (conditional on state n0) risk-neutral probabilities of the price states
n ∈ Lτ at the option’s expiration date from the solution of the quadratic program:

minimize p̄n∈Lτ

∑
n∈Lτ

(p̄n − p̂n)2

s.t.
∑

n∈Lτ

p̄nSn = S0(erf )τ

∑
n∈Lτ

p̄n = 1

p̄n > 0, ∀n ∈ Lτ (11a)

The values p̂n are computed by the transformation (10) and reflect conditional probabilities for
the discrete states n ∈ Lτ implied by equilibrium principles. The risk-neutral (martingale) measure

2Equations (8) and (9) are developed in Bakshi et al. [2]; see also references therein citing applications of the same
constructs.

3Let,
MPi the observed market price of option i = 1, . . . , m, and
CPi(γ) the price of option i = 1, . . . , m , computed with Method 1 as discussed in this section; this price results

from the pricing procedure using a coefficient of relative risk aversion γ.
We estimate the value of the parameter γ so as to minimize the sum of the relative squared pricing errors over a set
of options i = 1, . . . , m , with the same maturity (differing in strike price). That is, we (approximately) solve with a
directed search the following unconstrained quadratic program:

γ = argminγ′

m∑
i=1

(
(CPi(γ

′)−MPi)/MPi

)2
.
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P̄ = {p̄n : n ∈ Lτ} obtained from the solution of (11) is the closest (in a Euclidean sense) to the
measure, P̂ , implied by equilibrium principles.

A similar idea is used in de Lange et al. [8]. They also minimize a metric between prices that
satisfy the martingale requirement and reasonable equilibrium prices. Rubinstein [32] used an anal-
ogous idea. He also determined a risk-neutral measure by minimizing its distance from a reference
distribution. First, he established the risk-neutral probabilities in a standard binomial tree. Then
he determined the implied posterior risk-neutral probabilities using a quadratic program. These
probabilities were, in the least square sense, those closest to log-normal that caused the present
value of the underlying asset and all options calculated with these probabilities to fall between their
respective bid and ask prices.

Once we determine the equivalent risk-neutral probabilities p̄n for the discrete outcomes, Sn, n ∈
Lτ , of the underlying asset’s price, pricing the options is straightforward. The fair price of a European
call option at node n0, with strike price K, is the expected value of its payoff over the risk-neutral
measure, discounted by the riskless rate:

c0(S0,K) = (e−rf )τ
∑

n∈Lτ

p̄n[max(Sn −K, 0)], (12)

The fair price of a European put option with strike price K is similarly computed by:

p0(S0,K) = (e−rf )τ
∑

n∈Lτ

p̄n[max(K − Sn, 0)]. (13)

The transformations in (10), and the pricing calculations (12) and (13), are straightforward. But
the quadratic program (11) must be solved at each node where an option valuation is to be carried
out. Most involved is the procedure for estimating the risk aversion parameter γ (summarized
in footnote 3) because the function that is minimized is only implicitly expressed in terms of the
variable. The estimation of the parameter γ is done once, and then the estimated value is used in
all subsequent option valuations.

The advantage of this approach lies in its generality. It is, in principle, applicable for any
discrete representation (scenario tree) of the random asset prices, and values the options by explicitly
considering these discrete distributions.

King [26] develops a mathematical basis for analyzing contingent claims in the discrete time,
discrete state case. He models the hedging problem as a stochastic program. He shows that the
absence of arbitrage (i.e., boundedness) in the hedging problem translates in the dual to the existence
(feasibility) of a valuation operator (probability measure) that makes the discrete discounted price
process into a martingale. In complete markets the dual problem establishes the fundamental asset
pricing theorems and determines the unique valuation operator (equivalent risk-neutral martingale
measure). In incomplete markets the dual has multiple solutions giving rise to a range of prices for
the contingent claim. Bid and ask prices for the claim are characterized by the extremal cases of the
dual’s feasibility set. A similar approach for contingent claims analysis is summarized in Zhao and
Ziemba [40].

In complete markets both King’s approach and the method described above will determine the
same (unique) martingale measure over the discrete set of price outcomes, and hence the same prices
for options on the constituent assets. In this case we will not have to solve the quadratic program (11);
when there is a sufficient number of linearly independent securities so that the system corresponding
to the martingale conditions (2)–(4) is completely determined the required martingale measure is
thus obtained from its unique solution. However, for the case of incomplete markets we resort to
market equilibrium principles in order to determine a point estimate (approximation) of the option’s
price — associated with a specific choice of an equivalent martingale measure — rather than a price
range within a bid-ask interval.
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3.2 Method 2: Accounting for Skewness and Kurtosis of Asset Returns

We explore another approach that prices options on the basis of an empirical distribution of asset
prices. The theoretical foundation for this method was introduced by Jarrow and Rudd [24] and
further developed by Corrado and Su [7] (Brown and Robinson [6] provided a correction note).

Let,

τ the term of a European option,
S0 the market price of the underlying asset at the time of the option’s valuation,
S̃τ the random price of the underlying asset at the option’s expiration date,
rf the riskless rate,
K the exercise price of the option.

The log-return of the asset during the holding period is:

r̃τ = ln S̃τ − lnS0 = ln(S̃τ/S0) . (14)

Then
S̃τ = S0 er̃τ , (15)

and the conditional distribution of S̃τ depends on that of the log-return r̃τ .
In the risk-neutral setting, the price, c0, of a call option is computed as:

c0 = (e−rf )τE[(S̃τ −K)+] = (e−rf )τ

∫ ∞

ln(K/S0)
(S0e

x −K)f(x)dx , (16)

where f(.) is the conditional density of r̃τ .
Corrado and Su [7] applied a Gram-Charlier series expansion to represent the empirical proba-

bility density of asset log-returns, in order to derive an option pricing formula. The series expansion
approximates the underlying distribution with an alternate (more tractable) distribution, specifically,
with the log-normal. The coefficients in the expansion are functions of the moments of the original
and the approximating distributions.

A truncation of the series to only two terms results in the familiar Black-Scholes pricing formula.
Additional terms in the series expansion account for the effect of higher order moments of the asset
returns’ distribution on the option price. Corrado and Su derived the pricing formula based on a
four-term Gram-Charlier series expansion so as to account for skewness and kurtosis of asset returns.
Intuition suggests that for practical purposes the first four moments of the underlying distribution
should capture the majority of its influence as it affects option pricing (see, e.g., Jarrow and Rudd [24],
p. 349).

Using a four-term Gram-Charlier series expansion for the conditional density f(.), Corrado and
Su solved (16) and obtained the following expression for the price of a call option:

c0 = CBS + γ1Q3 + (γ2 − 3)Q4 , (17)

where CBS is the Black-Scholes price, and Q3 and Q4 represent adjustments for nonzero skewness
and kurtosis respectively. The quantities in (17) are computed as follows:4

CBS = S0N(d)−Ke−rf τN(d− στ ) , (18)

Q3 =
1
3!

S0στ [(2στ − d)ϕ(d) + σ2
τN(d)] , (19)

Q4 =
1
4!

S0στ [(d2 − 3dστ + 3σ2
τ − 1)ϕ(d) + σ3

τN(d)] , (20)

d =
ln (S0/K) + rfτ + σ2

τ/2
στ

. (21)

4ϕ(.) is the standard normal density, N(.) is the cumulative normal distribution, γ1 = µ3/µ
(3/2)
2 and γ2 = µ4/µ2

2

are the Fisher parameters for skewness and kurtosis, respectively, and µi is the ith central moment of asset returns.
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The price, p0, of a put option with the same strike price, K, is determined by put-call parity:

p0 = c0 + Ke−rf τ − S0 . (22)

This method augments the B-S price with additional adjustments that account for the effects
of skewness and kurtosis of the distribution of asset returns. It is simple to implement and is
computationally efficient. Unlike the previous approach, it does not require the solution of an
optimization program or other involved computations. It involves only fairly simple calculations and
can be readily applied to price options at any node of the scenario tree. Besides basic deterministic
inputs (rf , S0, K) it only requires estimates of the moments of the underlying asset’s return during
the holding period. These moments are determined on the basis of the discrete outcomes of the asset
prices at the option’s maturity, as specified at the leaf nodes n ∈ Lτ of the subtree on which pricing
is carried out (as shown in Figure 1).

With the moment-matching procedure that we employed in this study, the discrete distributions
are generated so that the moments of asset returns match corresponding empirical estimates that are
determined on the basis of observed market data. Although this pricing procedure does not directly
use the specific outcomes prescribed on the scenario tree, it conforms to the discrete distribution
they represent as it uses the same statistics (first four moments) of asset returns.

4 Empirical Features

4.1 Effects of Higher Moments

The moment-matching method allows full control of the moments when generating scenarios. We
used this capability to numerically investigate and quantify the sensitivity of option prices to higher
moments (skewness and kurtosis) of the distribution of the underlying’s returns, and to examine the
extent to which option prices computed with the proposed procedures differ from B-S prices in cases
of asymmetric and heavy-tailed distributions of asset returns.

We carried out tests using market data of the S&P500 index as of November 20, 1999. The index
price on that date was S0 = 1424.26. From market values of the index over the period November
1989 to October 1999 we computed the following moments of monthly log returns: mean=0.007356,
variance=0.018762, skewness=0.011508, excess kurtosis=0.029589. We first generated 15,000 sce-
narios of index prices matching exactly these empirical moments. We generated additional scenario
sets (with 15,000 scenarios each) by varying only the skewness, or only the kurtosis, in the range of
±25% in increments of 5%, relative to their empirical values. We applied the two pricing procedures
described in the previous section to compute option prices based on these scenario sets.

We considered two different call options. One with a strike price K = 0.95S0 (in-the-money,
ITM) and one with a strike price K = 1.05S0 (out-of-the-money, OTM). From the results of the
tests, shown in Figures 2 and 3, we observe the following:

1. The two approaches consistently produce very similar option prices in all cases.

2. For the ITM option (Fig. 2), both procedures result in prices that are very close to the Black-
Scholes price when the empirical moments of the index return are used. This is because the
reference (empirically estimated) distribution of asset returns in this test does not deviate very
significantly from the log-normal. Moreover, the price of the ITM option is not (proportionally)
very sensitive to small variations of the higher moments. However, the Black-Scholes formula
clearly overprices the OTM call option (Fig. 3).

3. Both approaches exhibit consistent behavior in terms of the sensitivity of option prices to
changes in the higher moments of the index’ returns; the observed effects on their computed
option prices follow the same patterns. Of course the Black-Scholes price is unaffected by
variations of higher moments, as it depends only on the first two moments.
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Figure 2: Effects of changing skewness and kurtosis of asset returns on ITM call option prices.

4. As expected, the ITM call option is much more expensive than the OTM.

For the ITM call option, a decrease in skewness of the underlying’s return — especially negative
skewness — causes an increase in the price of the option, while an increase in skewness results in
lower option prices. The opposite trend is observed for changes in the kurtosis of the underlying
index’ returns. Changes in the higher moments did not have substantial (proportionally) impact on
ITM call prices. Of course this sensitivity of ITM call option prices to higher moments depends on
the level of the induced changes and on the degree of the option’s “moneyness”.

More frequently interesting in practice are OTM options, whether call or put, which are cheaper
than ITM options. Long positions in OTM put options provide downside risk coverage, while long
positions in OTM call options enhance upside potential.

For the OTM call option, the computed price exhibits an increasing trend in terms of both the
skewness and the kurtosis of the underlying index’ returns. Except for the high values of kurtosis
or/and skewness, the Black-Scholes formula overprices the OTM call option in comparison to the
proposed procedures. This is an empirically observed limitation of the Black-Scholes formula (i.e.,
it underprices deep OTM put options and overprices deep OTM call options). We also observe a
higher (proportional) sensitivity of OTM call option prices to changes in the higher moments of asset
returns, in comparison to ITM call options.

The results illustrate that the proposed pricing procedures are more flexible, and more consistent
in estimating market prices of options, in comparison to the Black-Scholes approach. This is a
consequence of the fact that they account for the effect of higher moments of the underlying’s
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Figure 3: Effects of changing skewness and kurtosis of asset returns on OTM call option prices.

returns and can react to changes of these statistics, while the B-S formula accounts only for the first
two moments. These results are qualitatively consistent with those reported by Corrado and Su [7]
and Theodosiou and Trigeorgis [33] on the effect of higher order moments of asset returns on option
prices; Theodossiou and Trigeorgis employ a range of different distributions in their analysis.

4.2 Implied Risk Neutral Distributions and Skewness Premia

The insight from equations (12) and (13) is that the price of OTM calls is most affected by the
upper tail of the risk-neutral distribution, while the price of OTM puts is most affected by the lower
tail. This is because an OTM call yields payoffs only if the asset price rises above the exercise price,
while an OTM put yields payoffs only when the asset price falls below the strike price. As Bates [3]
notes, the symmetry or asymmetry of the risk-neutral distribution is reflected in the relative prices
of OTM calls and puts. Symmetric risk-neutral distributions imply equal prices for symmetric OTM
calls and puts (i.e., options whose exercise prices are spaced symmetrically around the mean asset
price (S0e

rf τ ) at the expiration date).
A skewness measure of the risk-neutral distribution is the “skewness premium”, defined by

Bates [3] as the percentage deviation of a% OTM call prices from a% OTM put prices:

SP (a) =
c0(S0,Kc)
p0(S0,Kp)

− 1 (23)

where Kc = (1 + a)S0e
rf τ and Kp = (1 − a)S0e

rf τ are the strike prices of the a%-symmetric OTM
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call and put option, respectively.
Method 1 allows to estimate directly a discrete approximation of the risk-neutral distribution

of asset returns. Using this approach, we estimate the risk-neutral distribution of monthly returns
for the S&P500 index at each month during the period of Jan. 1999 to Nov. 2002. Based on the
estimated distributions, we calculate the skewness premia for 5% and 2% OTM call and put options,
according to equation (23). The resulting skewness premia — from computed option prices — are
plotted in Figure 4 and show that the implied risk-neutral distributions for log-returns of the S&P500
index during this period are not symmetric. Three distinct regimes can be noticed. From Jan.-99 to
Sep.-00, OTM puts are more expensive than OTM calls, yielding negative skewness premia. Positive
skewness premia are observed during the short period between Oct.-00 and Feb.-01, while from Mar.-
01 until Nov.-02 the skewness premia are again negative. Figure 4 also confirms that the deeper OTM
the options are, the higher, in absolute value, the respective skewness premium.
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Figure 4: Empirical estimates of skewness premia for the S&P500 index.

Skewness premia provide an indication of market expectations. If skewness premia are negative,
the market considers a decrease in the value of the underlying more likely than an increase. This
would imply a negatively skewed distribution, and a higher probability that an OTM put option
will be exercised at maturity compared to the corresponding probability that a symmetric OTM call
option will be exercised.

Figure 5 plots the S&P500 index between October 1988 and December 2002. Comparing Fig-
ures 4 and 5 we observe that skewness premia varied in a similar pattern to the underlying — the
S&P500 index. They exhibit an upward trend during periods of market advancements, while they
take increasingly negative values during periods of market declines. The skewness premia are positive
during the period in which the S&P500 had peaked.

Figure 6 plots the estimated risk-neutral distributions of the S&P500 index’ returns at two points
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Figure 5: Market values of the S&P500 index.

in time; the first when the skewness premium was positive (Dec. 2000) and the second when it was
negative (June 2002). The value of the index, S0, at the corresponding date and the strike prices Kc

and Kp for a = 5% OTM call and put options, respectively, are also marked on the graphs.
We see that the estimated risk neutral distribution on Dec. 2000 (first graph) is positively skewed.

The probability that the index will exceed the strike price, Kc, of the OTM call option is higher than
the probability that it will fall below the strike price, Kp, of the symmetric OTM put option. This
explains why the OTM call is more expensive than the symmetric OTM put in this case.

The assumption of a geometric Brownian motion for asset prices in the Black-Scholes framework
implies a log-normal risk-neutral distribution (i.e., positively skewed). When the empirically esti-
mated risk-neutral distribution is indeed positively skewed — as is the case for the S&P500 index
returns on 12/2000 (first graph of Fig. 6) — then the two proposed procedures produce prices for
OTM call and put options that are close to the Black-Scholes prices. Their price differences de-
pend only on the degree that the empirically determined risk-neutral distribution differs from the
log-normal.

This does not hold when the estimated risk-neutral probability distribution for asset returns
comes out to be negatively skewed, as is the case for the S&P500 index returns on June 2002
(second graph in Figure 6). The probability that the index will fall below the strike price, Kp, of
the OTM put option is now higher than the probability that it will exceed the strike price, Kc, of
the symmetric OTM call option. Hence, the OTM put becomes relatively more expensive than the
respective OTM call, which is reflected in the negative skewness premium.
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Risk-Neutral distribution of S&P 500 stock index (12/2000)
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Figure 6: Estimated risk-neutral distributions of the S&P500 index returns. The distribution is
positively skewed in Dec. 2000 and negatively skewed in June 2002.

5 Empirical Validation of Methods using Market Option Prices

We empirically assess the performance of the proposed option-pricing procedures. We compare
option prices obtained with the proposed valuation procedures, and with the Black-Scholes method,
to market prices of options on the S&P500 stock index. The B-S prices serve as reference point
for comparison. Empirical evidence of a valuation method’s ability to approximate market prices of
options, without systematic biases, provides a proper basis to assess its efficacy. Keeping in mind,
however, that no valuation approach reproduces exactly the option prices observed in the markets.
Justifications for the differences between model and market prices of options are pointed out by
Bates [4], Jarrow and Madan [23], and Jacquier and Jarrow [22].

A critical parameter of the Black-Scholes pricing formula is the instantaneous volatility, σ, of the
underlying’s return. One can either use an estimate of volatility based on historical observations of
asset prices, or can compute an estimate of volatility that is implied by quoted option prices at a
particular time of interest. We used both approaches in our tests.

We considered European call options on the S&P500 stock index with maturity, τ , of one month.
All data for the analysis were obtained from Datastream. We priced European call options at two
different dates: December 20, 2000 and June 20, 2002. Our estimates of the skewness premia at
these two dates have opposite sign, implying different market regimes. Basic data for the analysis
are summarized in Table 1.

We see that the skewness premia implied by market prices of options confirm the corresponding
premia determined from estimates of the risk neutral distribution of the S&P500 index for the
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Dec. 20, 2000 June 20, 2002
Value of S&P500 stock index (S0) 1305.6 1006.29
Monthly riskless interest rate (rf ) 0.06578% 0.018762%

Skewness Premia from Estimated Risk Neutral Distributions
2% OTM 0.044 -0.114
5% OTM 0.247 -0.403

Skewness Premia Implied by Market Prices of Options
∼3% OTM 0.082 -0.1853

Estimated Statistics of Monthly Returns of the S&P500
Mean (µ1) 0.01208 0.0073
Standard Deviation (µ2) 0.1826 0.1926
Skewness (µ3) -0.00344 -0.115
Kurtosis (µ4) 0.025 0.029
Implied Volatility (σISD) 0.1909 0.1969

Table 1: Basic data for option valuation on 20/12/2000 and 20/06/2002.

respective dates.5 A negative skewness premium reflects a negatively skewed risk-neutral distribution
for the underlying. In such a case, the Black-Scholes approach systematically overprices OTM calls
and underprices OTM puts; the mispricing is higher for deep OTM options. We show that this is
indeed observed with market prices of options.

Tables 2 and 3 compare the performance of the valuation procedures, and contrast their estimated
option prices against market prices of the options on 20/12/2000 and 20/06/2002, respectively. 6

A number of one-month European call options on the S&P500 stock index with different strike
prices are considered. Call options with strike prices lower, respectively higher, than the price of
the S&P500 index, S0, at the respective date (i.e., ITM and OTM call options, respectively) are
separated by a dividing line in each table.

The valuation methods include the two procedures described in section 3, and two variants of
the Black-Scholes approach: B-Sh refers to the B-S method using an estimate of volatility σ from
historical observations of the index, while B-SI refers to the B-S method using the volatility estimate
σISD implied by the entire set of option quotations on the respective date.

In all cases the two proposed procedures consistently yield option prices that are quite close, even
though the manner in which they account for the effect of higher order moments of the underlying is
different. Their option price estimates approximate more closely than the Black-Scholes model the
market prices of deep ITM, and especially of OTM, options. Black-Scholes prices have slightly smaller
errors only for a few ITM call options. While the Black-Scholes approach substantially overprices
deep OTM call options — and would correspondingly underprice deep OTM put options, — the
proposed procedures approximate more closely the market prices of these options. OTM puts are
particularly suitable for controlling downside risk and are also inexpensive. The systematic mispricing
of OTM options by the Black-Scholes method is particularly evident when the skewness premium is
negative, i.e., in June 2002 (see, Table 3).

5The skewness premia from observed market prices of options are approximate, as there were no price quotations
for exactly symmetric call and put options (i.e., same OTM level). We used the available price quotations for options
whose strike prices were closest to 3% OTM. The data confirm the different sign of the skewness premia at the two
dates.

6A discrete distribution with 15,000 scenarios of index prices at the options’ expiration date is used for pricing each
option with the proposed procedures. In each case, the index’ price scenarios are generated with the moment-matching
method so that the first four moments of the index’ returns match their corresponding empirical estimates, computed
on the basis of observed index values during the preceding ten years.
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Estimated Option Prices
Strike Market Method 1 Method 2 B − Sh B − SI

Price Price Price Error Price Error Price Error Price Error
950 354.5 360.2 1.61% 360.4 1.66% 360.8 1.78% 360.8 1.78%
975 329.9 335.3 1.64% 335.1 1.58% 335.9 1.84% 335.9 1.84%
995 310.1 314.7 1.48% 315.0 1.57% 316.0 1.91% 316.0 1.91%

1025 291.8 286.4 -1.83% 285.8 -2.04% 286.2 -1.90% 286.2 -1.90%
1050 267.0 261.3 -2.13% 261.1 -2.21% 261.3 -2.12% 261.3 -2.12%
1075 242.4 236.4 -2.47% 236.5 -2.42% 236.5 -2.43% 236.5 -2.43%
1100 216.3 211.2 -2.35% 210.8 -2.53% 211.6 -2.15% 211.6 -2.15%
1125 192.9 186.4 -3.36% 185.9 -3.62% 186.8 -3.16% 186.8 -3.15%
1150 168.1 161.1 -4.18% 161.0 -4.24% 162.0 -3.64% 162.1 -3.60%
1200 117.9 111.4 -5.49% 111.2 -5.66% 113.4 -3.83% 113.7 -3.58%
1250 58.5 63.1 7.86% 63.0 7.69% 68.8 17.65% 69.6 19.03%
1270 45.4 48.0 5.79% 48.3 6.45% 53.5 17.80% 54.5 20.03%
1275 42.4 45.8 8.08% 46.1 8.79% 49.9 17.76% 51.0 20.26%
1285 36.0 38.1 5.83% 38.4 6.67% 43.2 19.98% 44.3 23.14%
1300 28.0 30.2 7.86% 30.4 8.57% 34.2 21.98% 35.4 26.33%
1320 21.0 22.2 5.71% 22.5 7.14% 24.1 14.76% 25.3 20.67%
1325 18.8 19.6 4.53% 19.9 6.13% 21.9 17.02% 23.2 23.59%
1345 13.1 14.3 8.95% 14.4 9.71% 14.7 11.76% 15.8 20.43%
1350 11.4 12.4 8.92% 12.5 9.89% 13.1 15.79% 14.3 25.48%

Mean Absolute Error 4.37% 4.82% 9.24% 11.69%
RMSE 5.40% 5.93% 12.11% 15.42%

Table 2: Observed vs estimated prices of European call options on the S&P500 index (December 20,
2000).

6 Conclusions

The objective of this work was not the pursuit of novel theoretical developments in option pricing.
Instead, its contribution lies in the adaptation and empirical assessment of appropriate valuation
methods to price options in a scenario-based framework so as to incorporate them in stochastic
programming models for portfolio optimization. This is motivated by the fact that options consti-
tute particularly suitable instruments for risk management purposes due to the asymmetric form of
their payoffs. The capability to incorporate options in stochastic programming models for dynamic
portfolio management problems enhances the potential applicability of such models, especially for
applications in which risk management is a prime concern.

Stochastic programs have the flexibility to accommodate general discrete distributions in terms of
scenario sets that do not necessarily conform to distributional assumptions of common option pricing
methods. This necessitates the adaptation of suitable procedures for pricing options in accordance
with discrete distributions of asset prices represented by scenario trees, so as to ensure internal
consistency of the stochastic portfolio optimization models.

We explored and implemented two procedures to price options in accordance with discrete rep-
resentations of stochastic asset prices. The proposed option valuation procedures take into account
higher order moments of the empirical distribution of the underlying asset’s returns. We generated
scenarios of asset returns with a moment-matching procedure so as to capture the empirical mo-
ments. We numerically verified that the asset price scenarios are arbitrage-free. We showed that the
higher order moments clearly affect the estimated prices of options; their effects can explain, at least
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Estimated Option Prices
Strike Market Method 1 Method 2 B − Sh B − SI

Price Price Price Error Price Error Price Error Price Error
800 207.7 207.9 0.10% 207.6 -0.02% 207.6 -0.04% 207.5 -0.09%
825 183.2 182.8 -0.25% 182.6 -0.33% 182.6 -0.30% 182.5 -0.36%
850 159.0 157.6 -0.87% 157.6 -0.90% 157.7 -0.82% 157.6 -0.88%
875 135.2 132.7 -1.83% 132.6 -1.94% 132.8 -1.79% 132.7 -1.83%
900 112.9 107.9 -4.42% 107.5 -4.82% 108.0 -4.30% 108.1 -4.23%
925 89.4 83.4 -6.74% 82.3 -7.98% 83.9 -6.15% 84.3 -5.74%
930 72.5 77.5 6.96% 77.3 6.60% 79.2 9.26% 79.7 9.88%
935 67.6 72.7 7.61% 72.4 7.06% 73.1 8.18% 75.1 11.12%
950 54.2 57.7 6.40% 58.2 7.36% 61.2 12.95% 62.0 14.44%
960 48.6 48.6 0.07% 49.4 1.71% 52.8 8.70% 53.8 10.77%
965 43.2 45.3 4.78% 45.3 4.90% 48.8 13.02% 49.9 15.75%
975 37.0 37.7 1.86% 37.9 2.34% 41.3 11.51% 42.5 14.97%
990 27.2 26.7 -2.00% 27.4 0.87% 31.1 14.46% 32.6 19.94%
995 24.3 23.7 -2.60% 24.4 0.49% 28.1 15.70% 29.7 22.03%

1005 20.3 19.9 -1.77% 20.4 0.72% 22.6 11.49% 24.2 19.35%
1010 17.5 17.8 1.74% 17.9 2.55% 20.1 14.99% 21.8 24.44%
1020 14.2 15.0 5.51% 15.3 7.52% 15.8 11.34% 17.4 22.48%
1025 12.1 13.1 8.52% 13.3 9.64% 15.0 24.08% 15.5 27.70%
1030 10.6 11.6 9.77% 11.7 10.79% 13.2 24.94% 13.7 28.99%
1040 7.6 8.6 13.25% 8.7 14.90% 10.2 33.90% 10.6 39.17%
1050 6.3 6.7 6.83% 6.8 8.62% 7.7 22.00% 8.0 27.77%
1060 4.2 4.7 12.09% 4.8 13.76% 5.7 35.83% 6.0 43.47%

Mean Absolute Error 4.74% 4.82% 8.56% 11.04%
RMSE 6.13% 6.85% 16.26% 20.49%

Table 3: Observed vs estimated prices of European call options on the S&P500 index (June 20,
2002).

partly, the difference between Black-Scholes prices and the market prices of options.
We demonstrated through extensive numerical tests using real market data that the proposed

valuation procedures produce estimates of option prices that are consistently similar, and approx-
imate more closely than the Black-Scholes method market quotations of option prices. They also
exhibit consistent behavior in terms of the sensitivity of their computed option prices to changes
in the higher moments of asset returns. The numerical results show that the proposed valuation
procedures are notably more effective in those cases that the Black-Scholes formula is known to
systematically misprice options (i.e., overprice OTM call options and underprice OTM put options,
especially when the skewness premium is negative). Such conditions are common in practice (e.g.,
see Figure 3).

The numerical results show that the pricing of European options based on scenario trees that
capture asymmetries and heavy tails of empirical asset return distributions is a viable valuation
alternative. As we discussed in section 3, the proposed procedures can be applied to price European
options at any decision node of a scenario tree. Hence, these procedures can provide flexible tools to
incorporate options in stochastic programming models.

In [34, 35] we employed the procedures suggested in this paper to price options on stock indices
denominated in different currencies, as well as quanto options on these indices, and incorporated these
options in stochastic programming models for international portfolio management. In numerical
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tests using market data we found that the inclusion of the options improved the performance of
international portfolios by reducing risk while maintaining upside potential.
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