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Capital Investment Decisions with Partial Reversibility, Operating Constraints, 
and Stochastic Switching Costs. 

 
 

 

Abstract 

 

We study dynamic investment strategy in a network of a discrete set of sequential and partially 

reversible decisions (i.e., optimal technology or capacity choice, optimal sequence of expansion, 

contraction, temporary shutdown, etc.) in the presence of hysteresis-inducing switching costs.  

We allow time intensive (time-to-build) decisions, and operating constraints (e.g., exhaustible 

resources or contractual limitations).  More importantly, we incorporate a proper treatment of 

economic depreciation -- a mostly ignored factor in the contingent claims analysis of investments 

under uncertainty -- and we provide for switching costs and recovery (abandonment) values that 

are themselves path (utilization) dependent, and thus stochastic.  We provide two illustrative 

examples, one with learning-by-doing in sequential investments, and one with a search for 

dominant technologies when introducing a new product/technology in shipping.  It is seen that 

economic depreciation can be a very significant factor in valuation, with striking effects 

especially for the most important for decision-makers range of at- or near out-of-the-money 

investment options.  Our other results are intuitive but sometimes non-conventional, e.g., in the 

presence of flexibility, an increase in uncertainty often can lead to investing earlier instead of 

waiting.  Similar results are often observed with a decrease in the asset payout yield (a result not 

observed in earlier literature).  In addition to previous literature we demonstrate that such non-

conventional results may decrease or vanish in the presence of factors like operating constraints 

that limit flexibility. 
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Introduction 

 

 In this paper we implement a numerical solution framework with sequential investment 

and disinvestment strategies, optimal investment technology or capacity choice, costly switching, 

and path-dependent switching and abandonment costs.  It also accommodates time-to-build, 

operating constraints (exhaustible resources), and interactions among investment timing and 

operating decisions.  More importantly, we allow for path (utilization) dependent and thus 

stochastic switching costs and recovery (abandonment) values.  Thus, we explicitly include 

economic depreciation as a significant element that affects valuation and decision making, a 

mostly ignored factor in real option analysis.  To our knowledge this is the first paper that 

addresses stochastic switching costs and encompasses such a general solution framework.  In 

contrast to the literature with analytic or even numerical solutions, when necessary we keep track 

of the complete path of decisions and not only the last one. 

 

 Contemporary models of partial irreversibility were first introduced in the literature by 

Brennan and Schwartz (1985) who valued natural resource investments and demonstrated that 

the classic Net Present Value (NPV) rule fails under uncertainty and irreversibility-inducing sunk 

costs.  Dixit (1989a, 1989b, 1989c) extends their results and coines the term hysteresis to 

characterize the resulting zone of inaction within which optimal decisions are path-dependent.  

He studies optimal capital (de)allocation decisions in a two-sector economy with costly capital 

mobility and optimal entry or exit decisions in a foreign market with uncertain exchange rates.  

The emphasis in the original problem formulation is on infinite-horizon problems that admit 

analytic solutions.  An extension in corporate finance with a finite horizon is given in Mauer and 

Triantis (1994) through the use of numerical partial differential equation (PDE) methods.  Path-

dependent problems with time-to-build and continuous learning-by-doing where the associated 

PDE is solved numerically are also treated in Majd and Pindyck (1987 and 1989).   
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 The importance of a general framework with complex sequential investment decisions is 

discussed in Kulatilaka (1988), Kulatilaka and Marcus (1988), Triantis and Hodder (1990), and 

Trigeorgis (1993).  Other authors have looked at more specific issues like capacity choice 

(Pindyck, 1988), sequential investment with time-to-build (Bar-Ilan and Strange, 1998), dynamic 

choice between two manufacturing locations in the presence of exchange rate risk (Kogut and 

Kulatilaka, 1994), intermediate inventories (Cortazar and Schwartz, 1993), the choice among 

mutually exclusive projects differing in scale (Dixit, 1993, and Dangle, 1999), interactions 

between time-to-build and capacity choice (Bar-Ilan, Sulem, and Zanello, 2002), optimal 

partially reversible investment (Hartman and Hendrickson, 2002, and Kandel and Pearson, 

2002), etc.    

 We introduce a numerical solution framework that is general enough to allow the study 

of optimal scale, optimal expansion and contraction strategies (partial reversibility) allowing for 

more than two alternatives (unlike, for example, Kandel and Pearson, 2002), the impact of time-

to-build and operating constraints, and a realistic treatment of economic depreciation.  The last is 

very important since it has not been treated before, and it results in path (utilization) dependent 

switching costs and abandonment values that are hard to treat.  Due to the generality and 

difficulty of the problem, we allow decisions only at (an arbitrary number of) points in time.  We 

proceed as follows.  We first describe the sequential investment problem with partial reversibility 

in its generality and the conceptual solution framework that allows us to study the impact of 

uncertainty, flexibility, and (potentially) stochastic switching costs.  Subsequently we provide 

numerical results and discussion on two applications, namely learning-by-doing, and the search 

for a market niche in shipping.  These are selected as motivational cases in order to demonstrate 

the variety of issues that can be addressed and the different results that can be encountered in 

practice.  We then discuss the importance of allowing a realistic treatment of economic 

depreciation that produces utilization-dependent switching costs and abandonment values, which 

thus become path-dependent and in effect stochastic.  Finally we conclude. 
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1.  Investments as Networks of Decisions with Partial Reversibility 

 

 In this section we discuss the framework of complex investment problems in a 

multistage (sequential decision) setting with several alternative choice modes and partial 

reversibility to switch among these modes.  This framework embeds the option to wait to invest, 

the option to choose among several investment alternatives (strategies, technologies, or operating 

scales), the option to switch back and forth among alternatives (at varying degrees of capital 

reversibility), and captures interactions between investment timing and operating decisions.  Due 

to the presence of switching costs (and partial reversibility) the problem is inherently path-

dependent.  Complexity is further increased since switching costs and abandonment values 

themselves can be path-dependent due to explicit consideration of economic depreciation as a 

result of utilization of capital at varying degrees.  Decisions are allowed at finitely many times 

(semi-American style embedded options).  In addition, time-to-build and operating constraints 

are also built into it.  Several aspects of the problem require keeping track of the complete path of 

decisions and not only the previous one.  

 

 Valuation of a claim (a real option) V is contingent on stochastic state-variables that 

follow risk-neutral Ito processes like in Black and Scholes (1973), Merton (1973a, b), and more 

importantly for the case of real option pricing like in McDonald and Siegel (1984 and 1986).  

Review of the literature on contingent claims valuation of capital investments can be found in 

Dixit and Pindyck (1994), and Trigeorgis (1996).  In general, a continuous-time capital asset 

pricing model (see Merton, 1973b, or Breeden, 1979), the absence of market imperfections 

(taxes, etc.), dynamic market completeness (spanning), and an all-equity firm having monopoly 

power over its investments are assumed.  In our applications and due to the great complexity of 

the problems addressed, we assume a single stochastic variable S that represents present value of 

cash flows received in each period of utilization of capital (an assumption that we can generalize 

to more stochastic variables at the expense of computational intensity).  This stochastic variable 

follows in the risk-neutral measure the geometric Brownian motion process 
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(1)     ( )dS r dt dz
S

δ σ= − +  

 

where r is the riskless rate of interest and σ 2 the instantaneous variance (of the continuous rate of 

change).  The difference between the required return on asset S (or traded assets perfectly 

correlated with S) and its actual growth rate, is denoted by δ and represents a dividend-like 

opportunity cost of deferring investment in the revenue producing project (see McDonald and 

Siegel, 1984, and 1986); for a convenience yield interpretation, see Brennan and Schwartz 

(1985), and Brennan (1991).   

 

 Switching from mode i to j occurs at a switching cost i jI →  and provides a value jV .  

At the beginning, there is a superset of admissible action paths M that defines what decisions are 

admissible given any realized sequence of decisions.  At each point in time, tM −  is a subset of M 

and includes the history of events up to time t.  Given tM −  and the decision at t, mt, we denote by 

tM +  the remaining admissible decisions.  The objective is to find the optimal claim value V* 

over the set tM +  of remaining admissible choices that includes staying at the same mode i or 

switching to all other modes j including abandonment for salvage value Ai: 

  

(2)   ( ) { }2* , | , , , , ,... max
t

t t t t t t t t t
M

V S t M M m i S S V I
+

−
−∆ −∆ −∆ − ∆= = −  

 

where tM +  includes switching from i to all other modes j, staying at the same mode i, becoming 

idle, or abandoning for salvage value Ai: 
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(3)        

( ) ( )1 1
2 2, | , , , , ,... , | , , , , ,...j i j

t t t t t t t t t t t t t t t t t tV S t M M m i S S I S t M M m i S S→− −
−∆ −∆ −∆ − ∆ −∆ −∆ −∆ − ∆= − =

( ) ( )2 2
2 2, | , , , , ,... , | , , , , ,...j i j

t t t t t t t t t t t t t t t t t tV S t M M m i S S I S t M M m i S S→− −
−∆ −∆ −∆ − ∆ −∆ −∆ −∆ − ∆= − =

      … 

      … 

( ) ( )2 2, | , , , , ,... , | , , , , ,...i i i
t t t t t t t t t t t t t t t t t tV S t M M m i S S I S t M M m i S S− → −

−∆ −∆ −∆ − ∆ −∆ −∆ −∆ − ∆= − =

( ) ( )2 2, | , , , , ,... , | , , , , ,...idlei ii
idle t t t t t t t t t t t t t t t t t tV S t M M m i S S I S t M M m i S S→− −

−∆ −∆ −∆ − ∆ −∆ −∆ −∆ − ∆= − =

( )2, | , , , , ,...i
t t t t t t t t tA S t M M m i S S−

−∆ −∆ −∆ − ∆= . 

 

If a mode represents a state of inaction (a state of idleness, temporary shutdown or mothballing), 

the cash flows are determined by the proceeding mode i.  Before any investment decision is 

made, the process starts in the mode wait to invest (W), which can also be maintained (option to 

wait to invest).  The claim value at each mode j is a function of the cash flows at that mode plus 

the discounted optimal expected value of the claim at the next date: 

 

(4)  
( )
( ) ( ) ( )

2

2

, | , , , , ,...

, , * , | , , , , , ,...

j
t t t t t t t t t

j j r t
t t t t t t t t t t t t t t

V S t M M m i S S

R S t X S t e E V S t t M M m i S S S

−
−∆ −∆ −∆ − ∆

− ∆ −
+∆ −∆ − ∆

=

 = − + + ∆ = 
 

 

The operating revenues R minus the operating costs X capture the present value of cash flows till 

the next strategy revision.  R is a deterministic function of state-variable S and allows us to 

consider different technologies and operating scales to be directly dependent on S.  Of course, at 

the end of the time horizon the last term with the discounted expectation vanishes.  Note also that 

at the boundary (critical threshold of S) that separates the regions where either of two decisions, i 

and j, are optimal, and assuming that the current state is i, the following value matching and 

smooth pasting conditions hold: 

 

jiji IVV →−=  
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and 

( )
S
IV

S
V jiji

∂
−∂

=
∂
∂ →

 

 

 In many capital investment problems, operations cannot start until a first stage S1 is 

completed that takes time to build (see Majd and Pindyck, 1987).  In this case the attainable set 

of decisions differs significantly before and after completion of stage S1.  Before completion, it 

includes waiting W, S1, and possibly abandonment for a resale value AW; after completion the 

investment modes are as described earlier.  The set of available decision modes and the 

admissible transitions (switching options) are shown in Figure 1 that shows a network of four 

technologies C, B, E1, and E2.  These may differ in terms of installed capacity and they are 

mnemonics for contracted (small) scale, base-case capacity, expanded, and very expanded scale 

(alternatively they may simply represent different operating technologies).   

 

[Enter Figure 1 about here] 

 

In addition to the above, operating constraints can be included (that account for example, for 

exhaustibility of resources, etc.)  Such constraints imply that the economic life of the investment 

is limited.  In our formulation, the economic life of the investment in the presence of such 

constraints is not a function of time since capital was installed but a function of time that 

operations were was actually on.  Thus, if the firm gets into an idle (mothballing) phase after 

investment, we assume that during that time operations are off and exploitable resources are not 

depleted.  The extent to which an operation can stay in an active mode should be part of set M.  

During optimisation, tM −  and mt, keep track of past operations, and tM +  includes the set of 

actions that are further admissible.  Importantly, switching costs, I, and/or abandonment values, 

A, can be utilization-dependent and in effect path-dependent and stochastic.  tM −  and mt, (like in 

the case of operating constraints) keep track of past operations, and tM +  defines the further 
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admissible actions, and the switching costs, I, and the abandonment values, A, as a function of 

the realized use of installed capital (true and not simply historical economic depreciation). 

 

The switching matrix for costs must be logically (or economically) consistent.  Consider for 

example I1→2, I2→3, and I1→3 the costs of switching from the first state to the second, from the 

second state to the third, and from the first to the third directly (in ascending order of scale or 

productive capacity, etc.)  We must compare I1→3 with I1→2 + I2→3.  If I1→3 > I1→2 + I2→3cost 

efficiencies may be achieved due to learning-by-doing.  If I1→3 < I1→2 + I2→3, there might be 

scale efficiencies.  In general, a careful comparison of the total switching costs of all 

admissible paths is needed in order to avoid artificially inflating option values, and practically 

imposing or prohibiting certain transitions from one state to another. 

 

 Numerical PDE solutions for real option problems with path-dependency have appeared 

in Mauer and Triantis (1994), and Majd and Pindyck (1987 and 1989).  Financial (Asian) options 

have also been solved via PDE methods, like for example in Ingersoll (1987), and Alziary, 

Decamps, and Koehl (1997), to mention just a few.  They show that each decision point that 

contributes to path-dependency adds considerably to the dimensionality of the numerical 

solutions.  The great complexity imposed by the problems we treat here and the need for a 

considerable number of intermediate decision points makes the choice of PDE methods 

practically infeasible.  We therefore use a discretized (lattice-based) finite difference scheme as 

an approximation to the continuous state-space, and we allow decisions to be made at discrete 

points in time.  Then we solve a discrete multi-stage optimization problem through a forward-

backward looking algorithm of exhaustive search.  This takes the path-dependency and the early 

exercise (semi-American) features of the problem properly into account (see also Hull and 

White, 1993, and Thompson, 1995, for conceptually similar, lattice-based, approaches).  Path-

dependency is accounted for among the several decision points.  Between each two decision 

points, the lattice allows for an arbitrary number of steps in order to improve accuracy if and 



 10

when necessary.  Between decision points, lattice steps only provide discounting since no 

decisions are permitted in these regions, thus the dynamic programming (sequential) method 

afforded by the lattice can be replaced by an equivalent one-step method similar to that described 

for example by equation (6) (chapter 5, p. 177) in the classic book by Cox and Rubinstein (1985).  

When dense lattices are needed in some applications, this can improve computational efficiency 

considerably (say, a factor of two, three or more).  Finally we need to consider only the lattice-

points at all decision times and for all relevant values of the state-variable as given by the lattice 

construction.  For each such point we calculate the relevant option values for every feasible path 

of past decisions by exhaustive search.  We thus need to create auxiliary variables that keep track 

of all decisions and paths. This increases considerably memory requirements, but, given the high 

complexity of the problem, keeps the computational burden within the reach of the contemporary 

personal computers. The algorithm for exhaustive search is described below. 

 

A. Forward run: 

 

At each decision node (starting from time zero and proceeding to the option maturity), for 

each lattice point (from low to high values of the state-variable),  we activate each admissible 

decision.  By the time we reach maturity all decision combinations have been activated 

(operating revenues, fixed and operating costs have been determined); auxiliary variables 

keep track of the path of past decisions for each feasible path. At each time when decisions 

are permitted and for each lattice point, there are many paths of admissible decisions that are 

created and saved in computer memory (the exponential increase of the number of these paths 

gives rise to the computational intensity of the exhaustive search solution method). 

 

B. Backwards run: 

 

Option values are calculated (starting from option maturity and going backwards towards 

time zero) at each lattice point for each decision path; given the previous decision path, the 
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optimal decision is determined and thus the optimal option value.  Option values are 

calculated as functions of the cash flows and fixed (switching) costs (given a decision and the 

previous path) plus the expected continuation value as a (probability) weighted average of the 

optimal values at lattice points at the next decision node. 

 

Going backwards we find optimal decisions at each lattice point for each decision path.  

Finally, at time zero we can determine the optimal decision (when there exist many possible 

alternatives suboptimal decisions may differ by orders of magnitude). A similar grid search 

above and below the starting lattice point at time zero provides also the critical thresholds for 

different decisions. 

 

 We now illustrate for pedagogical purposes possible realized optimal decisions in a 

simple case, without time-to-build assumptions and without mothballing.  To make the 

illustration feasible we consider just for this section two decision stages, allowing just three 

investment decision-points (including the one at the end of the time horizon).  In the numerical 

results that will be discussed in more detail in the next section, six decision points have been 

used.  The number of decision points can be increased at the expense of computational intensity 

(but we have found that our implementation of a semi-American option with six decision points 

captures the most significant part of the early exercise premium of a fully American option). 

 

    [Enter Figure 2 about here] 

 

Figure 2 demonstrates the path-dependent nature of the optimal solution path.  In reality, the 

lattice is recombining in respect to the asset value S.  But the path that S follows determines the 

optimal investment, disinvestment or abandonment decisions.  Optimal solutions at any time 

differ according to the realized path (hysteresis) of S, and the previously realized decisions.  The 

optimal investment decisions (and option values) are sensitive to the level of asset S and to the 

value of parameters like uncertainty, etc.  This is the conceptual and solution framework that we 
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adopt.  In the following, we use it to study the impact of stochastic switching costs (due to 

utilization-dependent economic depreciation), operating constraints, etc. in the context of two 

applications that deserve merit on their own.  

 

  

2.  Two Applications: Learning-by-Doing, and Searching for a Market Niche in Shipping 

(Tanker Choices) 

 

 In this section we discuss two applications.  The first is a general implementation of the 

generic problem shown in Figure 1.  The cost parameters are chosen such that this case will 

simulate a learning-by-doing application with economic and technical efficiencies resulting from 

sequential (phased) development.  By construction, the cumulative capital cost of installing the 

highest capacity (E2) will be lower if built in a sequential fashion than if built all at once.  This 

assumption of added value to sequential investment due to learning-by-doing is adopted on 

purpose in order to investigate a case with a high degree of embedded optionality.  By 

incorporating operating constraints, we will see that the degree of optionality that we leave 

unconstrained affects values and investment decisions significantly.  The second application is 

also based on the general setup of Figure 1 but made specific to the shipping application (optimal 

operation of a tanker with mothballing) described in Dixit and Pindyck (1994, pp. 237-242).  

However, it is extended to all four tanker technologies discussed there and not just the one 

actually analyzed by them.  In this last case the flexibility to switch back and forth is reduced due 

to considerable switching costs resulting from reduced abandonment (resale) values.  This setup 

is useful not only for a tanker operator that has the option to switch technologies, but also (and 

this is a novel approach) for a firm that considers offering in the market a new tanker technology 

while taking into account other competing technologies.  By looking at the problem from the 

buyer´s point of view, the firm can investigate the extent to which the new technology will be the 

optimal one for adoption given the prevailing market conditions (and demand uncertainty), and 

also to what extent and under what circumstances it could become attractive in the future.  Thus, 
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the firm will know if a market niche can be captured, and can investigate whether and when to 

invest in building and offering the new product/technology. 

 

 Figure 3a provides the level of net revenues as functions of a price related state-variable 

S, and the capital costs for the first application.  Similarly, Figure 3b provides the same 

information for the second application.  In both applications, each time the firm is in an operating 

mode (technology) receives cash flows R(S) – X.  The switching (capital) cost I to first enter a 

mode is paid once, and if the system afterwards gets into an idle mode, cost N (with subscript 

specific to the operating mode) is paid.  When the time-to-build constraint is required, the system 

from the wait mode W must first enter an initial stage S1.  Abandonment happens at cost A 

(usually negative since part of the initial capital is hereby recovered).  At first we will discuss the 

applications with I and A constant, and then we will consider them to be utilization dependent.  In 

the first application the net revenue function is the simplest possible 

( ) ( ), ,j j j j
t t t t S t XR S t X S t f S f X− = −  where the constant parameters f are expansion factors 

that depend on the operating mode j the system is in and for simplicity are both equal to jf .  In 

the last application and for consistency with the Dixit and Pindyck application, the state variable 

is price P (per ton), and ( )t t tS S P=  is a linear function of price. 

 

   [Enter Figures 3a, and 3b about here] 

 

The remaining figures provide option values and an investigation of optimal exercise policy with 

sensitivity on S, the instantaneous standard deviation σ, and the asset payout or dividend yield δ, 

for the two cases.  For the numerical results and without any loss of generality or any effect on 

the insights gained we assume that the decision maker has six decision points (and one step 

between decision points) to make or revise her opinion up to the end of the time horizon.  From 

our experience that resulted from extensive experimentation, this affords a reasonable trade-off 

between accuracy (and generality) of the results, and calculation efficiency; due to the high 
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computational intensity of the numerical method, without any effect on the insights derived.  

Note that we are not merely interested in the valuation of the investment options, but also on 

identifying numerically the critical thresholds where decisions change.  This particular choice 

will also make it feasible to other researchers to exactly replicate our results.  Using for example 

six steps instead of one between decision points improved option value accuracy for the most 

interesting cases of the near at-the-money options by 5% (on average), with an accuracy 

improvement even less than that for the determination of the critical thresholds, but the 

computational burden increased by 100!!!.  Dense grids were more significant for very out-of-

the-money options, and less significant for in-the-money options. 

 

 For the first application we assume for the base case parameter values σ = 0.20 per year, 

δ = 0.10 per year, r = 0.05 per year, total time to maturity of 5 years, and X = 100.  Here we 

observe (Figures 4a, 4b) the most striking results, which are consistent (in respect to σ) with 

observations reported in Bar-Ilan, Sulem, and Zanello (2002), and Brekke and Schieldrop (2000) 

(for an earlier debate on the sign of investment-uncertainty relationship, see Caballero, 1991, 

Cortazar and Schwartz, 1993, Abel, Dixit, Eberly, and Pindyck, 1996, Bar-Ilan and Strange, 

1998, and more recently, Kandel and Pearson, 2002).  In cases like the ones we study with heavy 

embedded future sequential flexibility, higher uncertainty often tends to speed up (rather than 

delay) investment, in contrast to the standard option literature.  Investing earlier opens up new 

investment options whose value increases with uncertainty.  The decision to invest earlier is often 

at a lower mode of operation (i.e., reduced capacity level, less expensive technology, etc.).  

Intuitively it makes sense to start small and expand later.  Due to the sequential nature of the 

investment decisions, an increase in uncertainty (of S) increases also the value of the underlying 

asset, V, that includes the value of future prospects, which in effect represents a complex 

compound option.  This may make it optimal to invest at lower levels of S since the increase in 

the critical threshold of V can be less than the increase in the actual value of V.   
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 In contrast to any other literature so far, similar results (investing earlier) are also 

observed with a lower or zero dividend yield (whereas a zero dividend yield would never allow 

early exercise of the standard American call option).  This is attributed to the sequential nature of 

the cash flows and the limited time horizon of the problem.  A lower dividend yield is equivalent 

to a higher growth rate of the cash flows, so deferring investments penalizes investment value 

considerably due to the lost revenues.  The same impact of volatility and dividend yield appear 

also when a time-to-build assumption is used (see for example Figure 4c).  With the time-to-

build (intermediate-stage) assumption production can only start after build-up (in our numerical 

examples one decision stage later), which effectively places an implicit constraint on operations 

and reduces the investment option value.   

 

    [Enter Figures 4a – 4e about here] 

 

For the first application we also report results with explicit constraints on operations (Figures 4d, 

4e), such as limited economic life or exploitation of a given amount of exhaustible natural 

resources, contractual limitations, etc.  The more constrained the operations are the lower the 

option value, and the more investment is delayed (to be made later at potentially higher capacity 

levels).  With operating constraints, flexibility (embedded optionality) to switch is reduced and 

usually higher uncertainty and a lower payout yield defers investment, which eventually is 

expected to occur at a higher operating level.  Thus, the existence of operating constraints limits 

the value of future growth opportunities and enhances the irreversible nature of the investment. 

 

The above results demonstrate that reversal of the sensitivity of the American call option to 

uncertainty and the payout yield depends on the tradeoff between factors that increase and 

factors that decrease flexibility and its value.  The higher the degree of the embedded optionality 

the more we can expect such reversal to occur, and the opposite when flexibility is restricted, due 

for example to constraints on operation (like exhaustible natural resources or contractual 

limitations). 
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 In the last application (from the shipping industry) we assume for the base case 

parameter values σ = 0.15 per year, δ = 0 per year, r = 0.05 per year, total time to maturity of 10 

years, and X = 8.8.  Here flexibility to switch is a-priori reduced because of relatively high 

switching costs.  These high switching costs are due to the low resale (abandonment or scrap) 

value of each tanker type.  The net revenues equal ( ) 2 85000 8.8
1000000

j
j j jS t

S t t X X
f Pf S P f X f− = −  

in millions USD for every two-year period, assuming for the base case like they do 85000 

deadweight tons capacity.  The price is in USD per ton.  We have remained faithful to the extent 

possible to the information provided in Dixit and Pindyck (1994, pp. 237-241), retaining for 

technologies other than the base case the same constant of proportionality implied by them. 

 

    [Enter Figures 5a – 5b about here] 

 

The numerical results (Figures 5a – 5b) are qualitatively similar to those reported earlier, 

although relatively high switching costs reduce the value of flexibility and thus the sensitivity of 

optimal policy to volatility is as in the standard American call option.   

 

 A careful observation of the results confirms the existence of dominant technologies, 

namely B and E2.  For the given investment problem configurations, the other two alternative 

modes (technologies C and E1) even if they are technically sound, they are not attractive in terms 

of economics and they are practically never used.  This results holds even if the value of the 

investment (as a function of S) increases, even if parameters like volatility, dividend yield, etc. 

are reasonably outside the present range.  This demonstrates the value of the real options analysis 

to investigate whether there is a market niche for a new technology.  This relative attractiveness 

can be seen only in comparison with the competing alternatives as part of a network of 

investment decisions.  If these technologies were to be analyzed as isolated investment options, 

their value would appear to be significant, and such a naive real options analysis would be very 
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misleading (for a general discussion of positive and negative option interactions, see Trigeorgis, 

1993).   

 

 

3.  Stochastic (utilization-dependent) abandonment and switching costs 
 

 In the analysis so far, we have assumed that switching costs and abandonment values are 

constant.  In many realistic applications though, it is more realistic to assume that these values 

are functions of the actual utilization of the technology that is being abandoned.  Thus, true 

economic depreciation is accounted for.  This makes these values path-dependent and in effect 

stochastic.  In this section we assume that abandonment value depreciates according to i ic n
iAe−  

where Ai is the maximum possible recovery at immediate abandonment, counter ni keeps a record 

of the actual usage of the exiting technology mode, and the depreciation parameter ci determines 

the extent of recovery.  If for example the depreciation parameter c = 0.30 and the technology has 

been in use for 3 periods, recovery is 40.70% of maximum abandonment value A.  A parameter 

value c = 0 would imply that abandonment values are constant and do not depend on utilization 

of capital.  In our implementation, mothballing does not add to depreciation, only actual 

utilization does.  According to the industry experience, we could easily allow two depreciation 

factors, one for mothballing and one for actual utilization.   

 

 For the first application we provide numerical results with a stochastic abandonment 

value but with constant switching costs (see Tables 1 and 2).  We see that results can vary 

significantly.  When the constant c of economic depreciation is lower, option values can be 

significantly higher.  Differences in valuation are particularly striking for at- or out-of-the-money 

investment options.  This is very important, since the range of at- or near out-of-the-money is the 

most important for the economic consideration of new investments or the adoption of new 

technologies, addition of operating capacity, etc. by decision-makers (meaning that it is unlikely 

that rational managers will have forgone for too long extremely profitable opportunities; very in-
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the-money investment options are less interesting in practice).  The effect of option values and 

critical decision thresholds depends on the extent to which the current level of S is in a range of 

values where investment is reasonably likely to be followed in the future by abandonment due to 

adverse movements in the market of demand, product prices, etc. 

 

 Similarly with the abandonment values, the switching costs i jI →  from mode i to mode j 

may also be path-dependent.  We make use of this assumption in the shipping application for the 

components of the switching cost matrix 

 

i ic ni j W j
iI I Ae−→ →= − . 

 

The switching cost (from i to j) is determined from the initial capital cost to get to mode j minus 

the stochastic abandonment value at mode i, where W i
iA I →= .  For the shipping application 

numerical results are presented in Table 3.  Again we see that when the depreciation parameter c 

is lower, option value can be significantly higher especially again for at- and out-of-the-money 

options. 

 

 The numerical results in both applications confirm that lower depreciation or higher 

recovery (which occurs when the depreciation parameter is lower, and when relevant it also 

reduces the switching cost) is associated with higher option values.  This is again more apparent 

when asset value S is in a range where it is more likely that abandonment or switching (in future 

paths) will occur.  Different assumptions on the extent of capital recovery will also affect the 

optimal investment thresholds and optimal decisions.  If investment (or technological) 

alternatives have a varying degree of true economic depreciation, this should also be taken 

explicitly into account.  The practice to ignore the true economic depreciation of installed capital 

in many real option models is likely to misprice investment options and mislead decision makers.   
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    [Enter Tables 1 – 3 about here] 

  

 

Conclusions 
 

 In this paper we study sequential investment decisions under uncertainty within a 

general framework that allows flexibility in a network of partially reversible capital decisions.  

The method accommodates stochastic recovery and switching costs (utilization-dependent 

economic depreciation), and various imperfections like time-to-build (production lags) and 

constraints on operation (e.g., exhaustibility of resources).  Costly switching between operating 

modes induces path-dependency.  This framework allows the study of operating or strategic 

investment decisions in alternative production technologies, different levels of operating capacity 

(scale), dominance of technologies, and can be easily adapted to study other problems like 

mutually exclusive technologies (with varying degree of flexibility, etc.).  Our methodology 

allows us to keep track of the complete path of past decisions and not only the last one. 

 

 We have used this framework to study the impact of utilization-dependent depreciation 

that results in stochastic switching costs and recovery values.  We have found non-constant 

recovery values and switching costs to affect investment option values and optimal investment 

decisions significantly.  Among other important findings are, that, in the presence of flexibility, 

contrary to the standard options literature, an increase in uncertainty often leads to investing 

earlier instead of waiting.  Similar results are observed with a decrease in the dividend yield in 

the presence of sequential cash flows.  However, factors that limit flexibility, can reduce or 

eliminate these non-conventional results.  Finally, as illustrated by the shipping application, the 

framework also allows the investigation of market niche availability for newly developed 

technologies.  If new products or technologies are dominated by existing ones (under varying 

realizations of uncertainty and demand levels), it may not be fruitful to bring them in the market.  

Of course, and in a similar fashion, one can demonstrate the economic obsolescence of an 
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existing technology in the emergence of new ones.  Such investment (or disinvestment) decisions 

can only be investigated properly as part of a network of decisions, not in isolation. 
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Figure 1 
A decision network with high flexibility among  

four alternative operating modes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: The process starts from a wait-to-invest mode (W). Then can choose 
among alternative modes {C, B, E1, E2}. We can stay in each mode by 
keeping operations active or idle (mothballing). In mode W we can stay for as 
long as it is optimal to make the first investment decision. The decision set 
also includes the option to abandon (A) from any mode. 
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Figure 2 
Illustration of optimal strategies with four flexible operating modes 

Note: Illustrations of investment decisions with hysteresis for different paths of a state-
variable S on a standard binomial lattice.  At the end of the lattice, variable S takes only three 
values (the lattice reconnects), but for the middle value, there can be difference investment 
decisions due to path-dependency induced by switching costs and partial reversibility.  The 
process starts from a wait-to-invest mode (W). Then can choose among alternative modes {C, 
B, E1, E2}.  The decision set also includes the option to abandon (A) from any mode. 
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Figure 3a  
Case 1: Capital costs and net operating revenues under four alternative operating 
modes with and without Time-to-Build 

TO

FROM

W S 1 N S 1 C B E 1 E 2 N C N B N E 1 N E 2 A

W - 10 - 12 20 65 170 - - - - 0,00
S 1 - - 2 2 10 55 160 - - - - -2,50

N S 1 - - - 5 13 58 163 - - - - -2,50

C - - - - 5 35 85 2 - - - -3,00
B - - - -5 - 30 75 - 2 - - -5,00

E 1 - - - -35 -30 - 40 - - 2 - -16,25
E 2 - - - -85 -75 -40 - - - - 2 -42,50

N C - - - 3 8 38 88 - - - - -3,00
N B - - - -2 3 33 78 - - - - -5,00

N E 1 - - - -32 -27 3 43 - - - - -16,25
N E 2 - - - -82 -72 -37 3 - - - - -42,50

TO

FROM

W S 1 N S 1 C B E 1 E 2 N C N B N E 1 N E 2 A

- - - -50% 0% 50% 100% - - - - -
0,000 - - 0,607 1,000 1,649 2,718 - - - - -

- - - -50% 0% 50% 100% - - - - -
0,000 - - 0,607 1,000 1,649 2,718 0,050 0,050 0,050 0,050 -Benchmark B

Benchmark B

Expansion factors for the Operating Revenues (S)

Expansion factors for the Operating Costs (X)

NET OPERATING REVENUES

CAPITAL COSTS

Initial Capital Costs

Switching Costs

 
 
Figure 3b  
Case 2: Capital costs and net operating revenues under the shipping, mothballing 
and scrapping oil tankers application with and without Time-to-Build 

TO

FROM

W S 1 N S 1 C B E 1 E 2 N C N B N E 1 N E 2 A

W - 70,000 - 115,500 140,000 297,500 595,000 - - - - 0,000
S 1 - - - 45,500 70,000 227,500 525,000 - - - - -5,950

N S 1 - - - 45,500 70,000 227,500 525,000 - - - - -5,950

C - - - - 130,183 287,683 585,183 0,082 - - - -9,818
B - - - 103,600 - 285,600 583,100 - 0,200 - - -11,900

E 1 - - - 90,213 114,713 - 569,713 - - 0,329 - -25,288
E 2 - - - 64,925 89,425 246,925 - - - - 0,635 -50,575

N C - - - 0,325 130,183 287,683 585,183 - - - - -9,818
N B - - - 103,600 0,790 285,600 583,100 - - - - -11,900

N E 1 - - - 90,213 114,713 1,301 569,713 - - - - -25,288
N E 2 - - - 64,925 89,425 246,925 2,509 - - - - -50,575

TO

FROM

W S 1 N S 1 C B E 1 E 2 N C N B N E 1 N E 2 A

- - - -88,7% 0,0% 49,9% 115,6% - - - - -
0,000 - - 0,412 1,000 1,647 3,176 - - - - -

- - - -88,7% 0,0% 49,9% 115,6% - - - - -
0,000 - - 0,412 1,000 1,647 3,176 0,234 0,234 0,234 0,234 -

Expansion factors for the Operating Revenues (S)

Expansion factors for the Operating Costs (X)

CAPITAL COSTS

Switching Costs

Initial Capital Costs

NET OPERATING REVENUES

Benchmark B

Benchmark B
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Figure 4a 
Sensitivity analysis of option value and optimal operating policy vs. 
uncertainty with four alternative operating modes without Time-to-Build. 
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Four alternative operating scales (C, B, E1, E2 ), for a (5+1)-stage model, without Time-to-Build. We denote 
with C the small operating scale, B the base case, E1  and E2 the expanded operating scales.  Operating cost X = 
100, riskless rate r = 5%, ∆t = 1 per period.  
 
 
Figure 4b 
Sensitivity analysis of option value and optimal operating policy vs. payout 
yield with four alternative operating modes without Time-to-Build. 
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Four alternative operating scales (C, B, E1, E2 ), for a (5+1)-stage model, without Time-to-Build. We denote 
with C the small operating scale, B the base case, E1  and E2 the expanded operating scales.  Operating cost X = 
100, riskless rate r = 5%, ∆t = 1 per period.  
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Figure 4c 
Sensitivity analysis of option value and optimal operating policy vs. 
uncertainty with four alternative operating modes with Time-to-Build. 
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Four alternative operating scales (C, B, E1, E2 ), for a (5+1)-stage model, with Time-to-Build. We denote with 
C the small operating scale, B the base case, E1  and E2 the expanded operating scales.  Operating cost X = 100, 
riskless rate r = 5%, ∆t = 1 per period.  
 
 
Figure 4d 
Impact of operating constraints on option value and optimal operating 
policy for four alternative operating modes without Time-to-Build. 
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Four alternative operating scales (C, B, E1, E2 ), for a (5+1)-stage model, without Time-to-Build but with 
constraints on the maximum number of operations till option maturity. We denote with C the small operating 
scale, B the base case, E1  and E2 the expanded operating scales.  Operating cost X = 100, riskless rate r = 5%, 
∆t = 1 per period.  
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Figure 4e 
Sensitivity of option value and optimal operating policy vs. uncertainty for 
four alternative operating modes without Time-to-Build but with an 
operating constraint. 
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Four alternative operating scales (C, B, E1, E2), for a (5+1)-stage model, without Time-to-Build but with a 
constraint of maximum times of operation= 3. We denote with C the small operating scale, B the base case, 
E1 and E2 the expanded operating scales (having B as the benchmark). Operating cost X = 100, riskless rate r 
= 5%, ∆t = 1 per period.  
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Figure 5a 
Sensitivity of option value and optimal operating policy vs. uncertainty for the shipping, 
mothballing and scrapping oil tankers application without Time-to-Build. 
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Shipping, Mothballing and Scrapping Oil Tankers model, for a (5+1)-stage model without Time-to-Build. We denote with C the 
small tanker, B the medium tanker, E1 the large tanker, and E2  the very large crude carrier.  Operating cost X = 8.8, riskless rate r 
= 5%, ∆t = 2 per period. 
 
 
Figure 5b 
Sensitivity of option value and optimal operating policy vs. uncertainty for the shipping, 
mothballing and scrapping oil tankers application with Time-to-Build. 
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Shipping, Mothballing and Scrapping Oil Tankers model, for a (5+1)-stage model with Time-to-Build. We denote with C the 
small tanker, B the medium tanker, E1 the large tanker, and E2 the very large crude carrier. Operating cost X = 8.8, riskless rate r 
= 5%, ∆t = 2 per period. 
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Table 1 
Sensitivity of option value and optimal operating policy vs. 
uncertainty with four alternative operating modes without Time-
to-Build but with utilization-dependent abandonment values  
 

S σ=  10% σ=  20% σ= 30% σ= 10% σ= 20% σ= 30%

75 W W W 0.010 6.873 34.743
… … … … … … …
90 W W W 1.204 28.574 73.974
92 W W C 1.668 32.902 81.597
95 W W C 3.233 39.526 95.033
98 W C C 6.088 47.930 108.496
100 W C C 8.055 55.544 117.834
104 C C C 13.797 71.113 136.603
105 B C C 16.925 75.520 141.621
106 B B B 21.056 80.519 147.574
110 B B B 37.741 103.623 173.585
115 B B B 65.292 133.789 207.855
119 E 1 B B 93.157 158.249 235.416
120 E 1 B B 100.629 164.518 242.594
122 E 1 E 1 B 115.585 178.253 257.201
123 E 1 E 1 E 1 123.077 186.707 264.605
125 E 1 E 1 E 1 138.070 203.614 280.510
130 E 1 E 1 E 1 181.359 246.975 320.270
… … … … … … …
163 E2 E2 E2 517.351 559.954 630.414

75 W W W 0.153 8.582 37.429
… … … … … … …
90 W W W 2.929 31.729 78.279
91 W W C 3.744 33.996 82.370
95 W W C 7.994 44.335 99.433
98 W C C 11.252 53.545 113.504
100 B C C 14.222 61.264 123.343
104 B B B 29.671 78.907 144.639
105 B B B 33.538 83.933 150.508
110 B B B 57.216 109.956 181.033
115 B B B 85.336 141.425 214.038
119 E 1 E 1 B 110.465 170.918 241.055
120 E 1 E 1 B 117.242 178.939 247.846
123 E 1 E 1 E 1 137.571 203.003 269.971
125 E 1 E 1 E 1 151.124 219.045 287.495
130 E1 E1 E1 185.302 260.220 331.304
… … … … … … …
163 E2 E2 E1 517.351 560.975 633.768
165 E2 E2 E2 541.608 584.027 653.447

OPTIMAL INITIAL DECISION OPTION VALUE

c= 0.70

c= 0.30

 
 
Four alternative operating scales (C, B, E1, E2 ), for a (5+1)-stage model without Time-to-Build but 
with utilization-dependent abandonment values. We denote with C the small operating scale, B the 
base case, E1 and E2 the expanded operating scales. Operating cost X = 100, riskless rate r = 5%, ∆t 
= 1 per period. 
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Table 2 
Sensitivity of option value and optimal operating policy vs. payout 
yield with four alternative operating modes without Time-to-Build 
but with utilization-dependent abandonment values  

 

S δ=  0% δ=  10% δ= 20% δ= 0% δ= 10% δ= 20%

75 W W W 50.040 6.873 0.156
… … … … … … …
90 W W W 138.703 28.574 1.455
92 C W W 153.296 32.902 1.901
95 C W W 180.258 39.526 2.768
98 C C W 207.620 47.930 3.705
100 C C W 226.043 55.544 4.342
104 B C W 264.963 71.113 6.603
105 B C C 275.779 75.520 7.319
106 B B C 286.619 80.519 8.641
109 B B B 320.448 97.590 12.846
110 B B B 331.921 103.623 14.626
115 B B B 390.135 133.789 25.257
120 B B B 449.833 164.518 38.026
121 E 1 B B 462.950 170.787 40.587
122 E 1 E 1 B 476.647 178.253 43.148
123 E 1 E 1 E 1 490.343 186.707 46.353
125 E 1 E 1 E 1 517.735 203.614 55.718
… … … … … … …
163 E2 E2 E2 1061.020 559.954 270.018

75 W W W 56.502 8.582 0.276
80 W W W 79.390 14.364 0.590
85 W W W 109.626 21.801 1.120
90 W W W 143.232 31.729 2.253
93 C W W 165.671 38.725 3.735
95 C W W 183.548 44.335 4.732
98 C C W 210.955 53.545 6.343
100 C C W 229.995 61.264 7.527
102 C C C 249.313 69.622 8.950
103 B C C 259.696 74.238 9.974
104 B B C 270.330 78.907 10.998
105 B B B 280.989 83.933 12.044
110 B B B 336.150 109.956 21.985
115 B B B 392.938 141.425 41.497
119 E 1 E 1 E 1 440.496 170.918 58.126
120 E 1 E 1 E 1 453.822 178.939 62.808
125 E1 E1 E1 520.456 219.045 86.222
… … … … … … …
163 E2 E2 E1 1061.208 560.975 274.944
165 E2 E2 E2 1092.805 584.027 288.561

OPTIMAL INITIAL DECISION OPTION VALUE

c= 0.70

c= 0.30

 
 
Four alternative operating scales (C, B, E1, E2 ), for a (5+1)-stage model without Time-to-Build but 
with utilization-dependent abandonment values. We denote with C the small operating scale, B the 
base case, E1 and E2 the expanded operating scales. Operating cost X = 100, riskless rate r = 5%, ∆t 
= 1 per period. 
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Table 3 
Sensitivity of option value and optimal operating policy vs. 
uncertainty for the shipping, mothballing and scrapping oil 
tankers application without Time-to-Build but with utilization-
dependent switching and abandonment values. 
 

P
(in dollars $) σ= 15% σ=  25% σ= 15% σ= 25%

165.00 W W 0.424 14.660
… … … … …
185.00 W W 11.308 30.754
190.00 W W 14.602 36.311
195.00 W W 17.897 41.868
196.99 B W 19.209 44.080
200.00 B W 22.279 47.425
205.00 B W 27.379 52.982
210.00 B W 32.478 58.539
215.00 B W 37.578 64.301
220.00 B W 42.677 70.163
225.00 B W 47.777 78.766
230.00 B W 52.877 88.700
… … … … …
245.88 E2 W 69.120 120.576
250.00 E2 W 82.468 128.865
… … … … …
287.88 E2 E2 205.200 205.553

165.00 W W 4.662 25.593
… … … … …
185.00 W W 14.068 43.756
190.00 W W 17.153 49.143
195.00 W W 20.237 54.709
196.41 B W 21.109 56.333
200.00 B W 24.606 60.470
205.00 B W 29.478 66.232
210.00 B W 34.363 72.595
215.00 B W 39.248 81.640
220.00 B W 44.132 90.710
225.00 B W 49.119 99.780
230.00 B W 54.133 108.850
… … … … …
247.29 E2 W 83.160 140.213
… … … … …
273.54 E2 E2 164.620 190.086

c= 0.30

OPTIMAL INITIAL 
DECISION

OPTION VALUE            
(in million of dollars $)

c= 0.70

 
 
Shipping, Mothballing and Scrapping Oil Tankers model, for a (5+1)-stage model without 
Time-to-Build, using utilization-dependent switching and abandonment values. We denote 
with C the small tanker, B the medium tanker, E1 the large tanker, and E2 the very large crude 
carrier. Operating cost X = 8.8, riskless rate r = 5%, ∆t = 2 per period. 
 
 
 
 
 
 




