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Abstract

In this report we analyze different methodologies for assessing the risk of the traded

equity component of the portfolio of the Cyprus Development Bank. The approach taken

is to fit the Capital Asset Pricing Model (CAPM) to each of the securities. We consider

specifications of the CAPM with the CSE General Index as the market index, as well as

the use of the relevant sector indexes for each equity. The quality of the fit of the CAPM

to the securities is assessed in detail. Once the CAPM has been fit, we examine different

methodologies for scenario generation and risk measurement for the CDB portfolio. De-

tailed results are presented on the effectiveness of using each method for estimating the

industry standard risk measure Value-at-Risk (VaR). Methods for dealing with the lack

of data and liquidity of the local market are also discussed.
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1 Introduction

As Cyprus moves towards accession to the European Union, the local environment will

become increasingly risky and competitive. In this atmosphere of increased uncertainty,

financial institutions will be under increased pressure to ensure that they have the tools

to properly measure and manage the risks faced by their portfolio. A dramatic example

of the need for risk management for equity portfolios in particular was provided by the

recent speculative bubble on the Cyprus Stock Exchange (CSE) 1. This report presents a

comprehensive study of the risks facing the equity portfolio of the Cyprus Development Bank.

The methodology employed is to fit the Capital Asset Pricing Model (CAPM) to each of the

securities, then using this model generate scenarios for the future of the entire portfolio. Based

on these future scenarios, various risk measures are calculated, which provide a view on the

riskiness of the securities held by the bank. The accuracy of the risk measurement is assessed

through a historical backtesting exercise: we examine how each method employed would have

performed throughout the entire history of the CSE.

1.1 Risk Management in Emerging Markets

Risk managers in emerging markets face a number of challenges that do not present

themselves to their colleagues in more developed economies. The first and most apparent is

the often chaotic state of the local economy. The second is the short history of these markets.

This has a number of significant consequences. One is the relative novelty of financial markets

(both to institutions and households; this can be a major cause of speculative bubbles).

Another problem, equally important from a risk measurement perspective, is that there is a

startling scarcity of available data. Furthermore, those data that are available are of dubious

reliability (for example, the time series of a stock market that has recently undergone a

speculative bubble). In many emerging markets it is a daunting, if not impossible, task to

estimate a reliable interest rate curve. This is quite different from the situation in advanced

markets, where researchers can argue over the theoretical and numerical niceties of different
1for an analysis of how different risk management techniques would have performed during the bubble

period, see Nerouppos et al.
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curve fitting methodologies at the forefront of mathematical research. Emerging markets

also typically lack the liquidity and availability of derivative instruments required by the

theoretical assumptions of many standard mathematical models. Finally, we observe that

in many emerging markets, there is a lack of qualified individuals with the knowledge and

experience to develop risk management systems.

1.2 The Cypriot Environment

For a long time, much of the Cypriot economy has been a controlled, stable environment

(particularly in the areas of interest rates and foreign exchange). This observation is not

true of the stock market, which has recently undergone one of the most dramatic speculative

bubbles in history. While liberalizing economic reforms point the need to develop more

sophisticated methods for managing interest rate and foreign exchange risk, the need for

effective equity risk management systems is readily apparent.

Figure (1) shows the entire history of the CSE General Index, in log-scale. The history of

this index, and the performance of different risk management techniques over this period are

analyzed in detail in (Nerouppos et al.)

Figure 1: Cyprus Stock Exchange: Level and monthly volumes (period division).
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1.3 Risk Measurement for Equity Portfolios

One of the main functions of any risk management operation is to determine the amount of

capital that the institution must hold in order to be reasonably sure of covering its potential

losses. Methods for determining this capital amount are specified by the local regulators,

often following the lead of the Basel Committee of the Bank for International Settlements.

Institutions following the Basel guidelines may either calculate capital allocation for market

risk using standard formulae provided by the committee, or by calculating their Value-at-Risk

based on internal models (if local regulators approve of the use of internal models, and the

bank’s models are tested and approved).

Let Πt+τ denote the value of a bank’s portfolio at the risk horizon T = t + τ , assuming

that today is time t. Then the bank’s Value-at-Risk at the horizon T and the confidence level

α is given by the largest number ξ such that

P[Πt −Πt+τ ≥ ξ] = 1− α (1)

we then write ξ = VaRt,τ (Π;α).

In a regulatory environment where the use of internal models is approved (as is the case in

all developed markets, but not the case in many emerging markets, due to the factors discussed

above), required regulatory capital is determined as a multiple of the bank’s Value-at-Risk.

That is, the bank is required to hold an amount C given by the equation:

C = max(VaRt−1,τ (Π;α), κ ·VaRt,τ (Π;α)) (2)

where Π is the bank’s portfolio, α = 0.99, τ is 10 days, κ is determined by the performance

of the bank’s models in a backtesting experiment, and

VaRt,τ (Π;α) =
1
60

t−1∑

i=t−60

VaRi,τ (Π;α). (3)

This paper presents results for a number of different VaR methodologies using the back-

testing methodology recommended by the Basel Committee of the Bank for International

Settlements (2001).

3



1.4 Structure of the Report

The remainder of this report is structured as follow. The second section introduces the

Different methods used for measuring and simulating the performance of equity portfolios.

The third section provides an analysis of the returns of the CSE General Index and its

various subindexes. The fourth section presents a brief introduction to the Capital Asset

Pricing Model, upon which many of the results in the remainder of the report are based.

The fifth section presents a detailed analysis of the securities contained in the CDB equity

portfolio, including fitting the CAPM for each security to both the General Index and the

relevant subindex. The sixth section presents the results of the historical backtests on the

measurement of Value-at-Risk for a portfolio composed on the same equities as those held by

CDB. The seventh section concludes. Appendices present further backtesting results, as well

as useful results on the theory underlying our calculations.
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2 Simulation Methods

Two fundamentally different but popular simulation methods will be used in our study 2.

Namely the historical and the Monte-Carlo methods. The main assumption that underlies the

historical method is that history repeats itself, while the main assumption of the Monte-Carlo

is that the shocks that drive returns are normally distributed.

2.1 Historical Scenario Generation Method

The significance of this method lies in the fact that we can replicate the actual distribu-

tion of daily/weekly/monthly returns (depending on what we are interested in), without any

assumptions on parameters. The way it works is the following. At the first step, after choos-

ing the relevant time horizon (T days/weeks/months) we calculate all the observed returns

for the historical periods in which we are interested3. Then we randomly sample from these

returns, after giving weights to each data point, to create future scenarios. We can either

apply equal weights or weights depending on an exponential distribution4.

For example if we want to generate a 4-week scenario (i.e. generate a scenario in which

we create one value for each index for four weekly intervals), using only information from a

particular period, we read all the weekly returns for this period and then we choose randomly

four weekly returns to make up our scenario. This procedure can be repeated several times to

construct a scenario set. The size of the scenario set is constrained by the number of historical

observations available.

As already mentioned, the main assumption of this method is that history repeats itself.

Another strong assumption is that the returns we sample from are independent. This allows

us to generate our scenarios by random sampling. As we will see later, this assumption does

not hold as there is significant serial correlation in the CSE returns. When we replicate entire

periods we relax the assumption as we only require the first shock to be independent of the
2These are the same methods used by Nerouppos et al (2002).
3This is where the relevance of the subjective information comes into play. We choose the periods we believe

are more relevant to the future periods for which scenarios are generated.
4With the exponential distribution we assume that the more recent data are more significant.
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history. The rest of the scenario will be as it was realized at some point in the past.

2.2 Monte Carlo Scenario Generation Method

The Monte Carlo method simulates the different risk factors according to a particular

specification of a process. Here the process we use is the Geometric Brownian Motion (GBM),

which is the solution of the stochastic differential equation (SDE):

dXt = MtXtdt + Σtdiag(Xt)dWt X0 = x0 (4)

or equivalently the discretized version

∆Xt = MtXt∆t + Σtdiag(Xt)ξt

√
∆t X0 = x0 (5)

where

Xt is the n× 1 vector of the n risk factors

diag(Xt) is the n× n matrix with the elements Xt of its diagonal

Mt is a n× n diagonal matrix with the growth rates as elements of the diagonal

Σt is the n× n variance-covariance matrix

Wt is an n× 1 vector of Wiener processes

ξt is an n× 1 vector of i.i.d. N(0,1) random variables.

There are various ways to estimate the variance-covariance matrix depending on which

model seems most appropriate. The three estimation models used in our study are the

following:

• Simple constant sample estimation model. The volatility is the historical sample stan-

dard deviation of all the returns available.

• Exponentially Weighted Moving Average (EWMA) model. This is the RiskMetrics

approach and the variance is a weighted average of the past squared returns. The

weights depend on a parameter, λ, which is estimated to fit the data.
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• General Auto-Regressive Conditional Heteroskedasticity (GARCH) model. This model

is a more general case of the above (EWMA) and the spot variance depends on the

previous observed squared return, and on the estimated variance.
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3 Analysis of the CSE indexes

In this section we analyze the CSE general index and some sector indexes (Banks, Invest-

ment, Manufacturing and Finance) which are used for furthermore analysis in the following

sections. Following the analysis of Nerouppos et al (2002) we split the history of the Cyprus

Stock Exchange into three periods, in order to analyze and better understand the behavior

of the estimated CAPM parameter within them, defined as:

• Period 1: 29/03/1996 - 30/06/1999

• Period 2: 01/07/1999 - 31/10/2000

• Period 3: 01/11/2000 - 23/11/2001

The complete history of the CSE General Index is shown in Figure 2, together with the period

division and the monthly volumes, while in Figure 3 the level history of some sector indexes

is shown.

Figure 2: Cyprus Stock Exchange: Level and monthly volumes (period division).
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3.1 Daily Returns

We first analyze the daily returns of the General Index and the sector indexes. The daily

returns are defined as

rt = ln
(

St
St−1

)
(6)

where St is the closing level of the index or the subindex on day t.

The descriptive statistics of the daily returns for the CSE general index and the subindexes

are shown in Table (1). Moreover the normality tests of some sector indexes, which are used

for further analysis in the following sections, are shown in Table (2). From these statistics

we infer that the returns of almost all indexes5 are not normally distributed as they exhibit

particularly fat tails. The Excess Kurtosis for all indexes is considerably higher than 0, which

corresponds to normal distributions. The General Index and the Banks Index are slightly

positively skewed, something that is also indicated by the comparison between the two tail

extremes, Min and Max. As already mentioned, only the returns of the Financial index seems
5Except only the Financial index.
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to be normally distributed as indicated by the descriptive statistics and the normality tests,

Figure (5). This is somehow expected, because this specific sector started on 28/09/2000,

therefore it’s operating period coincides with period 3 of the CSE general index. As shown by

Nerouppos et al (2002), the returns of that period were close to being accepted as normally

distributed.

Mean StDev Skewness Exc.Kurtosis Min Max

General Index 0.0277% 1.945% 1.85 24.40 -10.08% 23.68%

Banks 0.0314% 2.166% 2.92 43.69 -11.53% 31.95%

Approved Investments 0.0275% 2.234% 1.00 9.79 -13.61% 17.09%

Insurance Companies -0.0430% 2.573% 0.01 7.61 -19.96% 14.16%

Manufacturing Companies -0.0346% 2.260% 1.17 10.89 -12.09% 18.84%

Trading Companies 0.0168% 2.584% -0.03 8.69 -20.66% 14.84%

Tourism Companies -0.0684% 2.834% 0.33 7.96 -21.60% 19.07%

Financial -0.393% 2.642% 0.31 1.68 -10.78% 9.907%

Other Companies 0.0383% 2.311% 0.94 9.84 -13.08% 20.44%

Table 1: Cyprus Stock Exchange: Descriptive statistics of daily returns, 29/03/1996-

23/11/2001.

Note: The following statistics test the null hypothesis of normality. At the 5% level the null

hypothesis is rejected when the p-value (in parentheses) is lower than 5%.

Test CSE G.I. Banks Investment Manufacturing Finance

Anderson-Darling (A2) 54.09(0%) inf (0%) 51.252( 0%) inf (0%) 0.749(12%)

Kolmogorov-Smirnov (D) 0.014(< 1%) 0.15 (0%) 0.13 (0%) 0.14(< 1%) 0.045(61%)

Chi-squared (χ2) 1775.53(0%) 850.72(0%) 749.82(0%) 792.49(0%) 25.86(3.9%)

Table 2: Cyprus Stock Exchange: Normality tests for sectors daily returns.
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3.2 Volatility of Daily Returns

The volatility6 of a risk factor is very important for risk management as it is one of the

parameters required to capture the tail of a distribution. Under the normality assumption

the variance is actually the only parameter required. The assumption that the volatility

of the daily returns of the CSE is constant collapses immediately when we look

at the running 25-day volatility window during the index’s entire history. This

is shown in Figure 6. The volatility at a particular day is estimated as the sample standard

deviation of the previous 25 returns, including the current return.

σ25,t =

√√√√ 1
24

24∑

i=0

(rt−i − r̄25,t)
2 (7)

where r̄25,t =
1
25

24∑

i=0

rt−i (8)

This is one way to estimate the current volatility, namely it is a historical estimation. Of

course different amounts of historical data can be used for every estimation, for example using

the 10 previous returns instead of 25, in a tradeoff between accuracy and relevance. Even the

absolute value of the spot return can be taken to be the volatility, but all of the above are just

approximations. They suffice, though, in indicating that the volatility is varying and maybe

even stochastic. One other way would be to estimate the Black-Scholes implied volatility 7.

Finally, the volatility at every point in time can be estimated through a model of the daily

returns which allows for varying volatility. This will be pursued in Section 3.3.

6We take volatility to be the standard deviation of the variable.
7In our case this is not possible, since there are no traded derivatives.
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Figure 6: Cyprus Stock Exchange: Level and volatility of daily returns.

3.3 The Basic Model of Daily Returns

We now develop a basic model for estimating daily returns. We take r1, r2, ..., rt, ..., rT

to be our sample of daily returns on particular days, as they are defined by eqn (6) using

continuous compounding. A basic model would be

rt = µt + σtεt (9)

where

µt is the expected value for the return rt conditional on information up to time t. The

unconditional process can be either deterministic or stochastic.

σt is the standard deviation of rt conditional again on the same information as above. The

unconditional process can be either deterministic or stochastic.

εt are shocks with zero mean and standard deviation one. They are usually assumed to be

independently and identically distributed (i.i.d.), as well as normally distributed. This

is what we will assume for the rest of this paper as well.
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Note that this model is very close to the Monte Carlo simulation model we have seen in Section

2. The latter, in its univariate form, is the solution of the stochastic differential equation

dSt

St
= µtdt + σtdWt S0 = s0 (10)

where St, µt, σt and Wt are as previously defined. Now, using Taylor expansion we can show

that this equation is analogous to the previous one (9) as

rt = ln
(

St

St−1

)
= ln

(
St−1 + dSt

St−1

)
= ln

(
1 +

dSt

St−1

)
=

dSt

St−1
+ O(dS2

t )

so rt → dSt

St−1
as dSt → 0

while dt = 1, for 1 day and εt = Wt

For the conditional process of µt (trend) we will use the following:

µt = µm,t =





1
t

∑t
i=1 rt−i , for t < m

1
m

∑m
i=1 rt−i , for t ≥ m

(11)

for all t ∈ [0, 1, ..., T ] and for some constant m

µt = 0 , for all t ∈ [0, 1, ..., T ] (12)

µt = µ̄ =
1
T

T∑

i=1

ri , for all t ∈ [0, 1, ..., T ] (13)

Equation (11) implies that the trend is taken to be the average of the previous m returns

and is used in order to capture the changing trend when the trend is assumed to be varying.

For the other two models in (12) and (13) we mention that they may not be consistent with

financial theory8, although they may be of value in risk-management. In order to capture the

risk we will have to capture the left tail (downward potential) of the distribution. Any over-

estimation of the daily returns’ trend causes the under-estimation of the tails and, therefore,

the risk9. One of course might argue that by setting the mean to zero we may overestimate

risk, which is not desirable either. So we will have to test how these models work in practice.
8The expected return may be estimated to be lower than the risk free rate. It is not very comfortable to

assume that the expected return of a risky asset is lower than the risk-free rate. This would exist only in an

economy with risk loving investors.
9An overestimation of µ shifts the distribution to the right and therefore the left tail will extend far enough

towards negative values, resulting in an underestimate of the risk.
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For the conditional standard deviation σt, two of the most commonly used models will

be employed, the Exponentially Weighted Moving Average (EWMA) and the General Auto-

Regressive Conditionally Heteroskedastic (GARCH(1,1)) model.

EWMA: σ2
t = λσ2

t−1 + (1− λ)(rt−1 − µt−1)2 (14)

GARCH(1,1): σ2
t = ω + α(rt−1 − µt−1)2 + βσ2

t−1 (15)

3.4 Estimation of the EWMA and the GARCH model

As indicated before the returns of the Finance index are considered to be normally dis-

tributed and therefore no volatility modelling is needed. In order to estimate the EWMA

parameter λ we considered the Maximum Likelihood Estimation (ML)10 method with condi-

tional mean set to zero, µt = 0. The estimated parameter, using the whole history of each

sector, is shown in table 3. The daily estimated parameter, shown in Figures (7), (8), (9) and

(10), tends for all indexes towards λ=0.9. This value is somewhat lower than the value

of λ = 0.94 used in the standard RiskMetrics methodology for developed markets.

CSE G.I. Banks Investment Manufacturing

λ 0.8816 0.8903 0.8733 0.9034

Table 3: CSE General Index: λ estimates for EWMA model.

Under the assumptions about εt, as given in the basic model equation (9), the distribution

of the return rt conditional on the information up to and including time t − 1, denoted by

Ft−1, is normal, i.e.,

rt|Ft−1 ∼ N(µt, σ
2
t ) (16)

where µt and σ2
t are as given by (11), (12) or (13) and (14) or (15) respectively. Therefore,

using the conditional densities we can construct the likelihood function and estimate the

parameters. For more details see Appendix A. The validity of the model can be checked by

testing the assumptions about the standardized returns εt, i.e., independence and normality.

10For further analysis information of the two volatility models, please refer to Nerouppos et al (2002).
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GARCH(1,1) and EWMA estimated parameters
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Figure 7: CSE: GARCH(1,1) and EWMA estimated parameters.
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Figure 8: Estimated GARCH(1,1) and EWMA parameters for Banks Index.

16



GARCH (1,1) and EWMA estimated parameters

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

02/09/96 02/03/97 02/09/97 02/03/98 02/09/98 02/03/99 02/09/99 02/03/00 02/09/00 02/03/01 02/09/01

lambda

beta

alpha

omega

Figure 9: Estimated GARCH(1,1) and EWMA parameters for Manufacturing Index.
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Figure 10: Estimated GARCH(1,1) and EWMA parameters for Investment Index.

17



In Table 4 we show the descriptive statistics and normality tests of the standardized

returns for the CSE genaral index and the three sub indexes estimations with µt = 0. The

normality tests suggest that no index can be considered as conditionally normal.

µt = 0 CSE G.I. Banks Investment Manufacturing

Mean 4.27% -2.05% -5.51% -2.65%

St.Deviation 110.94% 110.62% 110.714 111.36%

Skewness -0.37 0.31 0.14 1.06

Kurtosis 7.97 6.54 4.87 8.37

Minimum -925.27% -603.27% -740.49% -433.71%

Maximum 507.77% 687.41% 557.14% 802.18%

And.-Darling (A2) 6.47 (0%) 11.57(0%) 7.37 (0%) 16.68(0%)

Kolm.-Smirnov (D) 0.053 (< 1%) 0.065(< 1%) 0.0482(< 1%) 0.079(< 1%)

Chi-squared (χ2) 139.58(0%) 250.18 (0%) 192.65(0%) 258.03(< 1%)

Table 4: CSE General Index: EWMA descriptive statistics of standardized returns.

Next we fit the more general GARCH(1,1) process to the time series. The estimation of

the parameters is made using ML, as presented in appendix A, and setting µt = 0. Initially

we estimate the time series of the parameters in order to see whether there is any indication

of changes in the behavior of the indexes. As expected such an indication exists. Figure 7

shows the time series of the estimated parameters for the CSE general index. The volatility

process is becoming more persistent through time, since β is increasing from 0.2 to 0.8. An

analogous behavior is observed for other indexes too, Figures (8), (9) and (10). Moreover the

sum of α and β is close (but not equal) to 1.0 which suggests that the volatility process might

be integrated11.

Estimation of the parameters has also been made for the different sub indexes of the CSE

as shown by Table 5. For both the CSE G.I. and the Banks index the volatility persistence

(indicated by β) is relatively high, β '0.8, while for the other 2 indexes it is lower, β '0.7.

We note here that every family of estimated parameters implies a long-run volatility (see

Appendix A), given by σ∞ =
√

ω
1−α−β . The long-run volatilities of CSE general index and

11For a stable GARCH(1,1) process we require α + β < 1.
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the Banks index are very close to each other, σ∞ '1.9%, while the long-run volatility of the

other sector indexes is higher.

ω α β Long-Run Volatility Log-L

CSE G.I. 0.02374 0.17976 0.81373 1.906% -967.052

(0.00503) (0.01774) (0.01726)

Banks 0.0135 0.1271 0.8693 1.936% -1093.68

(0.0034) (0.01234) (0.01227)

Investment 0.1159 0.2533 0.7284 2.516% -1289.97

(0.0210) (0.02610) (0.0240)

Manufacturing 0.1095 0.2128 0.7733 2.806% -1354.08

(0.01964) (0.0228) (0.0213)

Table 5: CSE General Index: GARCH(1,1) parameters.

In order to check the validity of the GARCH(1,1) model for the CSE General Index we

need to analyze the standardized returns. The null hypothesis is that conditional returns are

normally distributed, i.e.,

H0 : rt√
σ2

t

|Ft−1 ∼ N(0, 1) (17)

As seen in Table 6 the normality test suggests that no index can be considered as condi-

tionally normal.

CSE G.I. Banks Investment Manufacturing

Mean -0.0146 0.7929 -4.82 -4.03

St.Deviation 1.0416 105.09 101.58 101.03

Skewness 0.2609 0.286 0.06 0.745

Kurtosis 6.8646 6.892 4.68 7.06

Minimum -4.8596 566.6 -5.10 -480.8

Maximum 7.1966 736.6 394 711.14

And.-Darling (A2) 5.843(0%) 11.28(0%) 6.86(0%) 13.56(0%)

Kolm.-Smirnov (D) 0.5362(< 1%) 0.056(0%) 0.059(< 1%) 0.085(0%)

Chi-squared (χ2) 143.63(< 1%) 326.04(0%) 268.04(0%) 346.55(0%)

Table 6: CSE General Index: GARCH(1,1) descriptive statistics of standardized returns.
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We also apply Ljung-Box tests. LB 1 and LB 2 test whether there is any autocorrelation

within the normalized and the squared returns respectively, while LB 3 tests whether the

GARCH model manages to adequately describe the volatility process. From the results of

Table 7 it follows that the GARCH(1,1) model manages to describe the volatil-

ity of each index. However the models do not eliminate the autocorrelation within the

normalized returns.

LB1 : Standardized Returns,
�
rt/
p

σ2
t

�
LB2 : Squared Returns,

�
r2

t

�
LB3 : Squared Standardized Returns,

�
r2

t

σ2
t

�
LB 1 LB 2 LB 3

CSE G.I. 260.9(0%) 455.21(0%) 34.96(24%)

Banks 79.76(< 1%) 282.53(0%) 48.23(22%)

Investment 133.85(< 1%) 1335.21(0%) 39.05(12%)

Manufacturing 82.56(< 1%) 1459.1(0%) 31.07(41%)

Table 7: CSE General Index: Ljung-Box statistic (lag 30).
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4 Capital Asset Pricing Model

The CAPM gives a pricing formula that relates the excess return of a security or a portfolio

to that of the excess return of the market, that is the expected return of a security is given

by:

E(Ri) = Rfree + βi(E(RM )−Rfree) (18)

where

E(Ri) is the expected return of the security

E(RM ) is the expected return of the market

Rfree is the short-term riskless interest rate

βi is the security beta.

The beta (βi) measures the relative comovements of security i for which investors should be

compensated and is estimated from the regression equation,

Rit −Rfree = αi + bi((RMt)−Rfree) + εit (19)

where Rit and RMt are the rates of return measured between time t−1 and t for security i and

an index representing the market portfolio of risky assets, respectively. εit is the residual value,

and αi
12 and bi are the two regression parameters, with bi being the statistical estimate of βi.

Merton (1972) has shown that the CAPM can also be derived in a continues time framework,

under the assumptions that trades can be executed at any time and that the return-generating

process for the stock prices is smooth, with no jumps in prices (i.e. it behaves like a diffusion

process).

Taking the variance of equation (18) we have that the total variance of the equity is

σ2
i = β2

i σ2
m + σ2

ε , (20)
12The underlying assumption of the CAPM model is that αi is insignificantly different than zero.
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which can be partitioned into the systematic risk13 β2
i σ2

M and the unsystematic14, σ2
ε .

The value of the security is therefore, using equations (6) and (18), given by,

Vt = Vt−1exp(Rfree + βi(E(RM )−Rfree) (22)

where Vt−1 is value of the security on day t− 1.

4.1 The regression model

The generic form of the linear regression model15 is

yi = f(xi1, xi1, ...xik) + εi (23)

= β1xi1 + β2xi2 + ...βkxik + εi, i = 1, ..., n, (24)

or equivalently in matrix form

Y = Xβ + ε (25)

where y is the dependent or explained variable, x1, x2,..., xk are the independent or explana-

tory variables (regressors) and i indices the n sample observations. The term ε is a random

shock -disturbance, usually drawn from a Normal distribution, ε ∼ N(0,σ2).

The least square estimator of β and its variance are given by:

β̂ = (XT X)−1XT Y (26)

V ar(β̂) = σ2(XT X)−1 (27)

and asymptotically

β̂ ∼ N(β, V ar(β̂)). (28)
13The systematic risk is a measure of how the asset covaries with the economy.
14The unsystematic risk is independent of the economy as shown.

Cov(Ri, RM ) = σi,M = βiσ
2
M + Cov(ε, RM ) (21)

= σi,M + Cov(ε, RM )

which implies that Cov(ε, RM )=0, only when ε, RM are normally distributed.
15A further analysis of regression models can be found in the classic book of econometric analysis by Green

W.H.,“Econometric Analysis”, available from Prentice-Hall International, London, 1997.
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The classical linear regression model consists of a set of assumptions so that the model is

considered suitable for further use. These conditions are:

1. Linear functional form of the relationship.

2. The variance of y is constant for all the different values of xi, that is the variance of y

is independent of the regressors xi, i=1,...,n and σ2
t = σ2.

3. The random shocks are independent.

4. The random shocks are normally distributed.

4.1.1 Ordinary Least Squares

In an one variable estimation model, (23) becomes

yi = α + βxi + εi, i = 1, ..., n, (29)

and therefore the ordinary least squares estimated parameters are taken by minimizing, with

respect to α and β, the sum of squared residuals:

QOLS (α, β) =
n∑

i=1

ε2
i =

n∑

i=1

(yi − α + βxi)2 (30)

The parameters are estimated through

α̂ = y − β̂x (31)

β̂ =
∑n

i=1(xi − x)(yi − y)∑n
i=1(xi − x)2

(32)

We refer to this method of estimation as the Ordinary method.

4.1.2 Weighted Least Squares

The parameter estimation of a weighted least squares regression is taken by minimizing,

QWLS (α, β) =
n∑

i=1

wiε
2
i =

n∑

i=1

wi(yi − α− βxi)2 (33)
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The parameters are estimated through

α̂ =
∑n

i=1 wiyi − β̂
∑n

i=1 wixi∑n
i=1 wi

(34)

β̂ =

∑n
i=1 wixiyi −

Pn
i=1 wixi

Pn
i=1 wiyiPn

i=1 wi∑n
i=1 wix2

i − (
Pn

i=1 wixi)2Pn
i=1 wi

(35)

This method is used by RiskMetrics16 in order to deal with the heteroscedasticity of the

returns. The weights are taken to be exponentially decaying, wi = λi, and λ is the EWMA

estimated parameter of the security. This method is hereafter referred as Weighted method.

4.2 Analysis of Variance

The components of variance (SST, SSR, and SSE), used thoroughly in the analysis of

variance, are typically shown in an ANOVA table.

SSR Sum of squares due to regression explains the portion of the total variation due to the

linear relationship of y with x.

SSE Sum of squares of errors explains the portion of total variation due to the deviations

from the linear regression, or the residual variation left unexplained by the regression

line.

SST Total sum of squares is the total variation of y.

MSR Mean square regression is the SSR divided by its degrees of freedom.

MSR Mean square error is the SSE divided by its degrees of freedom.

The coefficient of determination R2

R2 =
SSR

SST
(36)

is a measure of the fit of the model, and it measures the proportion of the total variation in

y that is accounted for by the regressors. While the statistical explanation of R2 is that it

provides a measure of the goodness of fit of the regression, the economic rationale is that it
16The ordinary least squares method is just a special case of the weighted where λ equal to 1.
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provides a estimate of the proportion of the risk of a firm that can be attributed to market

risk; the balance (1-R2) can be attributed to firm-specific risk.

The standard deviation (St. Dev.) of the estimates (e.g. β̂) implies that the true value of

β could range over

[β̂ − 1.96 St. Dev., β̂ + 1.96 St. Dev.] (37)

with 95% confidence. Therefore a small value of standard deviation indicates that the true

and the estimated value of the parameter do not differ significantly.

For a usual regression analysis the null hypotheses

H1
0 : α = 0 (38)

H2
0 : β = 0 (39)

are checked with t-statistics

α̂√
V ar(α̂)

∼ tn−2 ,
β̂√

V ar(β̂)
∼ tn−2. (40)

respectively. The above hypotheses may also be tested by an analysis of variance procedure.

The F-test defined by

MSR

MSE
∼ F1,n−2 (41)

is also used for testing the models (significance). If the observed significance level for the

F-test is small, the hypothesis that there is no linear relationship can be rejected.

Therefore the CAPM model, to be valid, we must accept the H1
0 and reject the H2

0 , at a

confidence level of 95%.

The Durbin-Watson (DW ) test checks for serially correlated (or autocorrelated) residuals.

One of the assumptions of regression analysis is that the residuals for consecutive observations

are uncorrelated. If this is true, the expected value of the Durbin-Watson statistic is 2. Values

less than 2 indicate positive autocorrelation while values greater than 2 indicate negative

autocorrelation.

For more details about regression analysis, estimation of parameters and analysis of vari-

ance see Appendix B.
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5 The CDB Portfolio

In this section we firstly describe how the data provided were treated. Then we analyze

the securities of the CDB portfolio, estimate the EWMA parameter and then estimate the

CAPM parameter β. Finally an analysis of variance is performed.

5.1 The Data

It is very important to mention that Cyprus Stock Exchange is an emerging stock market

where not all the securities are traded every day. As a result the data provided for some

securities are very problematic. An example is the EURO security where, being an active

stock security for 1341 days ( 02/04/1996-23/11/2001), only 937 days were traded. Moreover

within those trading days the number of null returns is large (134), which thereafter influences

the estimations.

5.2 Estimation Choices for Beta Estimation

There are three decisions we must take in setting up the regression described before. The

first concerns the length of the estimation period. Most estimates of betas use five years of

data, while Bloomberg uses two years of data. The trade-off is simple: A longer estimation

period provides more data, but the firm itself might have changed in its risk characteristics

over the time period. In this project the whole history of each equity was under consideration,

since the ”older” securities have a trading period that coincides with the trading period of

the Cyprus stock exchange while the ”younger” securities have a trading period less than two

years.

The second estimation issue relates to the return interval. Return on stocks are available

on an annual, monthly, weekly, daily, and on an intra-day basis. Using daily or intra-day

returns will increase the number of observations in the regression, but it exposes the estimation

process to a significant bias in beta estimation related to non-trading17. Using weekly or
17The non-trading bias arises because the returns in non-trading periods are zero (even though the market

may have moved up or down significantly in those periods). Using these non-trading period returns in the

regression will reduce the correlation between stock returns and, ultimately, the beta of the stock.
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monthly returns can reduce the non-trading bias significantly. In order to deal with the above

problem in the regression estimation, we first estimated the daily returns of each security and

then the non-trading days of each security were extracted from the database18. Then each of

the remaining daily returns was matched to the corresponding market-index daily return, in

order to have the same magnitude of observations for both the independent (market index)

and the dependent (security) variables. That is, whenever we had an observed daily return

for the security then we had the corresponding observed daily return for the corresponding

market index. Finally the β used in the backtesting procedure, for the missing days, was the

corresponding previous one.

The third estimation issue relates to the choices a market index to be used in the regression.

The standard practice used by most beta estimation services is to estimate the betas of a

company relative to the index of the market in which its stock trades. Both the CSE general

index and the corresponding sector indexes for each security, were considered in this project.

Most of the people who use betas obtain them from an estimation service; Merrill Lynch,

Barra, Bloomberg are some of the well known services. All these services begin with the

regression beta described above and adjust them to reflect what they feel are better estimates

of future risk. Although many of these services do not reveal their estimation procedures,

Bloomberg is an exception19.

To the extent that different services use different estimation periods, different market

indexes and different beta adjustments, they will often provide different beta estimates for

the same firm at the same point in time. While these beta differences are troubling, note that

the beta estimates delivered by each services comes with a standard error and it is very likely

that all betas reported for a firm fall within the range of standard errors from the regression.
18One could instead first fill the missing values of the security by interpolating the data, but with so many

missing data this would be misleading in the estimations.
19Bloomberg computes the regression beta and also computes what it calls adjusted beta, which is estimated

as follows.

Adjusted Beta = Regression Beta (0.67) + 1.00 (0.33)

These weights (0.67 and 0.33) do not vary across stocks and this process pushes all estimated betas towards

one.
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5.3 Analysis of the securities of the portfolio

The securities used for the portfolio are the following

Quote Name Start Date Sector Index

BOC Bank of Cyprus 29/03/1996 Banks

CLR CLR Financial Services 03/04/2001 Finance

EURO EuroInvestment 02/04/1996 Finance

INF Interfund 25/10/2000 Investment

LPL Lordos United Plastics 16/05/2001 Manufacturing

Table 8: Portfolio positions.

A portfolio consisted by the above securities, in equal weights of positions20, is considered

for the purpose of backtesting. We note that the Bank of Cyprus, even though is was not

a position of CDB, it was included in the backtesting. The BOC was not traded on the

following periods

• 16/08/1999 - 27/08/1999

• 15/11/1999 - 26/11/1999

• 16/10/2000 - 20/10/2000

while the EURO21 was not traded on

• 19/09/2000 - 18/10/2000

and therefore, for those days, the portfolio positions on that securities is set to zero.

The BOC had a split at 16/08/1999 with ratio 2:1 and at 7/12/2000 gave bonus with ratio

6:5, while the EURO had a split at 01/07/1999, ratio 2:1, and at 18/10/2000, ratio 1.5:1.

Therefore an adjustment of the securities prices is considered and the following figures shows

the adjusted security values22 through time.
20Each security had 1 position.
21Note that even though the EURO started trading the same period as the BOC, it has much lower sample

size.
22When adjusting the security values for splits the returns are not changed in magnitude, except of the day

of adjustment. Therefore the return of that specific day is extracted from the calculations.
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EURO value history adjusted for splits
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Figure 11: Euroinvestment adjusted value for splits.
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After appropriately adjusting the security values for splits, the descriptive statistics of the

daily returns of each security are shown, for both the sub-periods and the entire history, where

available. The high kurtosis indicates that the returns have fat tails and the distributions are

peaked. We note that the skewness of EURO is negative in both periods 2 and 3 indicating

that there were more and in larger magnitude negative returns as also indicated by comparing

the maximum and the minimum. In addition the standard deviation of EURO’s returns

is significantly high in both periods. Furthermore the CLR, INF and LPL had larger in

magnitude minimum than maximum. On the other hand, the returns of LPL (Table 11) are

the only ones that can be considered as normal, as indicated by the normality tests.

Note: The following statistics test the null hypothesis of normality. At the 5% level the null

hypothesis is rejected when the p-value (in parentheses) is lower than 5%.

Period 1 Period 2 Period 3 Entire History

Sample 798 280 264 1342

Mean 0.0771% -0.1988% -0.2988% -0.0284%

St.Deviation 1.3137% 3.341% 2.3876% 2.1161%

Skewness -1.3104 0.829 -0.3147 0.2990

Kurtosis 29.47 6.624 5.41 13.474

Minimum -14.5% -11.45% -11.1% -14.5%

Maximum 8.3% 20.083% 7.4% 20.083%

And.-Darling (A2) 30.55(0%) 8.28(0%) 1.39(0%) ∞
Kolm.-Smirnov (D) 0.168(0%) 0.133(0%) 0.191 (0%) 0.067(0%)

Table 9: Bank of Cyprus: Descriptive statistics of daily returns.
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Period 1 Period 2 Period 3 Entire History

Sample 420 257 260 937

Mean 0.2426% 0.0797% -0.8369% -0.026%

St.Deviation 2.9768% 6.4874% 6.6484% 5.059%

Skewness 0.5385 -0.881 -0.4543 -0.286

Kurtosis 8.824 8.355 10.8174 9.368

Minimum -16.8% -23.6% -43.3% -43.3%

Maximum 13.8% 25.15% 28.1% 28.1%

And.-Darling (A2) ∞ 12.74(0%) 6.19(0%) 4.16(0%)

Kolm.-Smirnov (D) 0.114(0%) 0.106(0%) 0.116(0%) 0.102(0%)

Table 10: Euroinvestment: Descriptive statistics of daily returns.

CLR INF LPL

Sample 161 268 120

Mean 0.1009% -0.1024% -0.1701%

St.Deviation 2.8395% 4.0484% 5.4151%

Skewness -1.0604 -0.1543 0.2659

Kurtosis 11.3045 7.1631 3.3997

Minimum -16.71% -22.31% -15.90%

Maximum 10.69% 15.41% 13.90%

And.-Darling (A2) 6.2496(0%) 4.3852(0%) 0.5571(> 15%)

Kolm.-Smirnov (D) 0.1912(0%) 0.1391(0%) 0.0337(20%)

Table 11: Descriptive statistics of daily returns for CLR, INF and LPL.

5.4 The EWMA decay factor λ for the securities

The estimated parameter λ for the securities for the sub periods is presented in the

following table while in Figures (13) - (17) the time-series of the estimated parameter is

shown.

The estimated parameter λ for all securities tends to be around 0.9, except for the CLR

where λ ' 0,75. This implies that CLR has shorter memory, maybe because of the short

history of the security and the large number of null returns within its’ trading history. These
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values of λ are somewhat lower than the value of λ = 0.94 originally used in the

standard RiskMetrics methodology for developed markets.

Period 1 Period 2 Period 3 Entire History

BOC 0.9451 0.8295 0.7469 0.9137

CLR 0.7958

EURO 1 0.7749 0.8035 0.9507

INF 0.8958

LPL 0.8971

Table 12: EWMA : The decay factor λ for each security.
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Figure 13: Estimated λ for BOC.
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Figure 14: Estimated λ for CLR.
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Figure 15: Estimated λ for EURO.
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Figure 16: Estimated λ for INF.
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Figure 17: Estimated λ for LPL.
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5.5 The estimation of CAPM parameter (beta β)

The beta estimated for the Ordinary model looks stable while, for the Weighted model

it fluctuates between -1 and +4 as shown by Figure (18). We note that the last estimates

(23/11/2001) of β with the CSE general index for the Ordinary models are consistently higher

than the β with the corresponding indexes. This is natural as the CSE general index is always

less volatile than any sector index (no sector index is fully diversified), Table (13).

General Index Sector Index

BOC 1.071 0.993

CLR 0.92 0.81

EURO 1.021 0.93

INF 1.321 1.18

LPL 0.909 0.839

Table 13: Estimated β of each security against the CSE General Index and the corresponding

sector indexes at 23/11/2001.
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Figure 18: Beta estimates of BOC against the CSE General Index.
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5.6 Analysis of Variance (ANOVA)

In this section the analysis of variance for the regression models is shown.

We must firstly note that the analysis of variance for the Weighted model is only valid for

the specific date of estimation, since as already mentioned β is not constant and therefore the

weighted least squares estimation model cannot be analyzed (the assumption of an ordinary

regression model is that β is a constant).

However we analyze the variance of the Weighted model for specific periods. As a result

we found that H1
0 is not always accepted for this method, the significance of the t-statistic

of parameter α is zero, Table (14), and therefore a constant term should be added in the

model in contrast to the CAPM assumptions. The F-test is indicating that the hypothesis

that there is no linear relationship is always rejected, as it should be.

Having fixed the EWMA parameter λ, the Ordinary model has consistently greater ex-

planatory power, as indicated by R2, than the Weighted model, Tables (14), (15). The low

values of R2 and the high value of standard deviation, for some securities (e.g. Lordos United

Plastics - Table 15), exhibits because of three mainly reasons,

1. The short trading period of the securities,

2. Large number of zero returns and

3. Many outliers occurred during that short period of trading.

A further illustration of the estimated parameter β and further analysis of variance of the

securities is presented in Appendix C.
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Period 1 Sum Squares d.f. Mean Square F-statistic sign. R2

Weighted SSR 0.004 1 0.004 1238.93 0 0.609

SSE 0.003 796 3×10−6

SST 0.007 797

Ordinary SSR 0.09 1 0.09 1572.178 0 0.655

SSE 0.047 796 6 ×10−5

SST 0.137 797

Estimate St. Dev t-statistic sign Durbin-Watson

Weighted bα -3.4×10−3 0.00049 -6.913 0 1.8876bβ 1.23 0.035 35.199 0

Ordinary bα 7.24×10−5 0.0001 0.265 0.791 1.96bβ 1.114 0.029 38.887 0

Table 14: Analysis of variance for BOC against the CSE general index for period 1.

Sum Squares d.f. Mean Square F-statistic sign. R2

Weighted SSR 0.003 1 0.003 11.793 0.01 0.091

SSE 0.025 118 0.0002

SST 0.028 119

Ordinary SSR 0.036 1 0.036 13.687 0 0.104

SSE 0.313 118 0.03

SST 0.349 119

Estimate St. Dev t-statistic sign Durbin-Watson

Weighted bα 2.1×10−2 0.005 4.259 0 2.118bβ 0.711 0.207 3.434 0.001

Ordinary bα -1.32×10−3 0.005 -0.28 0.78 2.374bβ 0.846 0.228 3.7 0

Table 15: Analysis of variance for LPL against the Manufacturing index for the whole history.
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6 Risk Management Using VaR Methods

In the previous sections we described the statistics of the CSE and the sector indexes and

examined the extent to which the CAPM is a valid model for explaining the variation of some

selected stock prices. In this section we firstly present the backtesting framework for assessing

the various methodologies. In the second subsection we present the various methods that are

used to generate VaR estimates. The backtesting results are presented in the last subsection.

6.1 Backtesting the VaR estimates

The backtest compares VaR measures for one-week, two-week and one-month changes

of the portfolio at a 95% or 99% confidence level, against the actual portfolio loss for the

corresponding time period. Assuming that the risk factors are correctly modelled and that

markets behave accordingly, we expect, on average, the absolute value of actual profit and

loss to be greater than the 99% VaR only 2.5 days over the last 250 days.23 The multiplicative

factor κ is determined by the number of times that portfolio losses exceed the corresponding

99% VaR (using a two week time horizon). It usually takes the value of three but it can

increase if the number of exceptions is greater than five, and can rise up to four if the number

of exceptions reaches ten or more during the period, as shown in Table 16. This multiplier

should be viewed as an insurance against model risk or imperfect assessment of specific risks.

Another view of this multiplier is as a safety factor against non-normal market moves.

A VaR estimate is generated using the methods described below for a particular time

horizon and confidence level. For every VaR figure we keep an overall score that is defined as

follows. At some point in time, i.e. a test on a date t, the violation score is defined as

Vp,τ,m,t =





1 if the actual loss is less than the VaR figure

0 otherwise
(42)

23Indeed, 99 per cent one-tailed confidence level means that we expect losses, but also profits, to be greater

than VaR in absolute value 2.5 times per year. Since in this paper we are only interested in downward

exceptions (actual net losses greater than VaR) we adjust the number of exceptions to the two year basis-500

days, Table 16.
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Number of exceptions CSE Multiplier

in (500) observations (626)

4 or fewer 6 3.00

5 7 3.40

6 8 3.50

7 9 3.65

8 11 3.75

9 12 3.85

10 or more 13 4.00

Table 16: Multiplier based on the number of exceptions in backtesting.

where p is the one-sided confidence level, τ is the time-horizon and m is the method. If the

null hypothesis (H0) is that the methodology is correct, then for every Vp,τ,m,t,

H0 : Vp,τ,m,t =





1 with probability p

0 with probability 1− p
(43)

for all p, τ, m and t ∈ [1, .., T ]

The overall score, henceforth called the violation ratio24, for the entire testing period

(1, .., T ) is defined as

Vp,τ,m =
1
T

T∑

t=1

Vp,τ,m,t. (44)

If we assume that the violation scores are independent of each other and that T is large,

then we can use the Central Limit Theorem to state that under the null hypothesis Vp,τ,m

is approximately normally distributed with mean p and variance p(1−p)
T . Therefore the null

hypothesis for a particular method m, confidence level p, and time horizon τ is defined as

H0 : Vp,τ,m ∼ N

(
p,

p(1− p)
T

)
.25

24The term violation ratio is somewhat misleading. While we have a violation when the actual loss is

greater than the VaR, the violation ratio is greater the greater the number of non-violations we have, since

non-violations should occur exactly α% of the time
25Throughout this paper, normally distributed variables are presented as V ∼ N (µ, σ)

38



In order to compare VaR figures one should consider the adjusted violation ratio, defined as

Ṽp,τ,m =
1
p
Vp,τ,m, (45)

with the corresponding null hypothesis

H∗
0 : Ṽp,τ,m ∼ N

(
1, (1−p)

pT

)
. (46)

The above distribution can be used to test the null hypothesis by checking whether the esti-

mated violation ratio Vp,τ,m is within the 95% confidence interval specified by the distribution.

It should be noted that while VaR has many desirable properties of a risk measure (it

is easy to understand, readily computable, measured in currency), it has some properties

that are less desirable. For a general discussion of properties of risk measures, see Artzner et

al. (1999).

6.2 The generation of Scenario sets in the CAPM framework

Here we present how the scenarios sets of the different stocks are generated. Using the

market information, up to the particular date t, we estimate the β of the security associated

with the corresponding Market Index (CSE General Index/Sector Index), using one of the

different estimation methods (Ordinary/Weighted) as described in section 4. In order to

generate the scenario sets of the stock we need the scenario sets of the market index. That

is, we need to generate scenario sets for the returns of the market index with which the stock

is associated. Through those generated scenario sets we derive, by using the estimated β and

equation (22), the scenario sets for the value of the stock. Scenario sets for the market index

are generated using a number of methods as described in sections 6.2.3-6.2.6 .
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6.2.1 The Various Methods

VaR estimates were generated using two different simulation methods, as well as a non-

scenario based method that makes use of the RiskMetrics methodology. The different ways

for generating the scenario sets and the standard RiskMetrics methodology are described in

detail below. The time horizons of interest are 1-week, 2-weeks and 1-month. Each scenario

set can generate four VaR figures for each time horizon, as follow:

• nVaR(95): Non-parametric VaR with 95% confidence, i.e., the lower 5% percentile of

the empirical distribution of the scenario set.

• nVaR(99): Non-parametric VaR with 99% confidence.

• pVaR(95): Parametric VaR with 95% confidence, i.e., after fitting a normal distribution

to the empirical distribution of the returns of the scenario set, we take the lower 5%

percentile of the fitted distribution.

• pVaR(99): Parametric VaR with 99% confidence.

Therefore each simulation method generates twelve VaR estimates (four methods for each

one of the three time horizons). The RiskMetrics methodology estimates six VaR values at

the 95% and 99% confidence level for each of the three time-horizons.

6.2.2 RiskMetrics VaR

Our first approach for VaR estimation is based on the standard methodology pioneered

at J.P. Morgan in RiskMetrics. Let the value of a financial instrument be denoted by V,

and the difference of today’s value from the (random) value at the end of a fixed horizon (T)

be denoted by ∆V. Then αV aR, at the one-sided confidence level α, is defined through the

relation

P (−∆V ≤ αV aR) = α. (47)

Therefore αV aR is the α percentile of the losses. Specifically, the RiskMetrics model assumes

that the distribution of the returns is normal with mean zero and variance σ2
t . It follows
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that ∆V is a mean-zero normal random variable with single-period variance σ2
t ; and the

appropriate equation

P (−∆V ≤ αV aR) ≈ α (48)

implies that

αV aR ≈ z[α]σt

√
T − t. (49)

For instance for a 10-day horizon at α=0.95 confidence level we have αV aR=1.65σt

√
10.

6.2.3 Method 1: Historical Sampling from CSE and other Indexes

With this historical simulation method we generate the scenario sets by sampling the

market index historical returns distribution and the distribution of returns of other indexes.

In the case of the CSE general index being the market index we arbitrarily give a weight of

82% to the local market (e.g. CSE) information set and 3% to each of the other 6 foreign

market information sets26. In the case of the market index being the sector indexes the

information sets are drawn only from the local market information sets and no foreign market

information are used.

As we have already seen the time horizons of interest are 1-week, 2-weeks and 1-month.

Therefore we generate the scenarios through sampling from the realized weekly returns to

which equal weights were applied. For a particular date t, called the session date, historical

scenario sets were generated by sampling from the following periods:

• CSE: 29/03/1996 - t

• ASE: 02/03/1998 - t

• Italy: 03/11/1997 - t

• Mexico: 01/03/1995 - 31/12/1998
26Following the same framework of Nerouppos et al (2002) we made use of foreign market information in the

historical simulations. The foreign information used was drawn from the stock exchanges of a)Greece b)Italy

c)Mexico d)Nasdaq e)Portugal f)Thailand.
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• Nasdaq: 01/04/1998 - t

• Portugal: 01/04/1987 - 01/03/1989

• Thailand: 01/10/1991 - 30/10/1998

6.2.4 Method 2: Historical Sampling from CSE and Historical Replication of

the Other Indexes

This historical simulation method makes use of the local information set the same way as

the previous historical simulation method and the foreign information set by creating what-if

scenarios. These what-if scenarios use the actual evolutions of the other indexes as proxies for

possible future evolutions of the local market index. More precisely, when the market index is

the CSE general index, a weight of 94% is given to the historical scenarios that are generated

by sampling from the local market returns and 1% to each of the 6 what-if scenarios. Again

when the market indexes are the sectors no foreign information is used and therefore no weight

is given to them. The periods that were used for these historical scenarios are the same as

the periods of the previous historical simulation method.

6.2.5 Method 3: Monte-Carlo with EWMA Volatility Model

The Monte-Carlo simulation methods use only local market information to produce future

scenarios. The process used for the market index is the solution of the driftless SDE (10).

That is

dSt

St
= σtdWt (50)

with σt given by the EWMA model. The discrete approximation of the above (using the

Euler discretization) is

St+∆t = St + Stσtεt

√
dt (51)

where εt are i.i.d. N(0,1), dt=1 (daily observations) and σt is calculated through

σ2
t = λkr2

t−k + (1− λ)
k∑

i=1

λi−1r2
t−i (52)

for some k and λ, (we take k = 74).
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6.2.6 Method 4: Monte-Carlo with GARCH(1,1) Volatility Model

In this Monte-Carlo simulation method we simultaneously simulate both the returns rt

and the volatility σ2
t of the market index. It uses, again, the same information set, i.e. only

the local market information, so we have that

rt = σtεt (53)

σ2
t = ω + αr2

t−1 + βσ2
t−1 (54)

St = St−1e
(rt). (55)

We iteratively simulate this system of equations in order to take into account the effect of

volatility upon the tails of the distribution of returns. The difference between this method

and the previous one is due to the simultaneous simulation of the volatility together with the

return. In this method the future volatility is estimated through the endogenous parameters

σ2
t

27 and rt and the exogenous parameter εt
28, in contrast to the previous method where

the future volatility is constant.

27The initial value of σ2
t is σ2

0 = ω
1−α−β

which is the expected volatility as shown in appendix A.
28The standard normal shocks are calculated through the Box-Muller algorithm.
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6.3 BackTesting Results

In this section we present the results of backtesting with market index being the CSE

General Index. The testing period was chosen to start before the bubble of the CSE stock

market, 09/02/1999, until the end of the time series, 26/10/2001. Scenario sets using all

four simulation methods were generated for each of the dates of the testing period. The VaR

figures generated were compared with the actual losses of each security of the portfolio29,

for the dates of the scenario sets. However, for some dates the comparisons were not made.

These were the dates for which the forecasting period of the CSE, (1 month ahead), had many

days for which there was no trading. More precisely, no testing was made for a date on which

there were more than

• Two days of no trading in the one week ahead or

• Five days of no trading in the two weeks ahead or

• Ten days of no trading in the one month ahead

From the 646 trading days in the testing period 20 days were lost because of these restrictions.

We need to mention here that, in principle, it does not matter how many trading days there

are within a particular time-horizon as what matters is the flow of information which drives

the prices. However, the above constraints were applied to avoid any thin-trading effects.

The null hypothesis as defined by equation (46) states that the 95% VaR adjusted violation

ratios for a sample of 626 is normally distributed

Ṽp,τ,m ∼ N (1, 0.008711) 30

and therefore a 95% symmetric confidence interval [0.9820,1.0180], while for the 99% VaR

violation ratios the distribution and 95% symmetric confidence interval are

Ṽp,τ,m ∼ N (1, 0.003977)

[0.9921, 1.0078] respectively.
29A similar compare was made for the CSE general index.
30The normally distributed variables are presented as V ∼ N (µ, σ)
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Therefore one way to test each method is to compare its adjusted violation ratio against

the appropriate confidence interval. The results are presented in Tables 46-61, Appendix B.

The adjusted violation ratios for each method and time horizon are shown.

As the method of generating scenarios of the market index is concerned, regardless of

the beta estimation method, we seem to have the following results. The best method seem

to be the Parametric VaR 1 method (pVaR 1), while the worst seem to be methods 3 and

the RiskMetrics, Tables (17) and (18). When the market index is consider to be the sector

indexes, then for the best performing methods (pVaR 1, pVaR 2 and PvaR4) the VaR results

seems to be better than the corresponding results when the market index is consider to be the

CSE general index. Moreover, we see that all parametric methods, using as a market index

the corresponding sector indexes seems to perform better than using as a market index the

CSE general index.

For both 95 and 99% VaR test results the parametric methods are performing better than

the non-parametric ones, Table 17. The parametric VaR outperforms the non-parametric

simply because it always assumes a symmetric distribution for the returns and not because

the returns follow a normal distribution. As we have seen in the analysis of the CSE General

Index daily returns, they are far from being normally distributed. The scenario sets generated

by the historical methods were positively skewed during the period when the level was going

up and it took the two methods a while after the turning point31 to adjust in producing

symmetric distributions. It is quite reasonable to assume that the downside potential of the

returns is of the same magnitude as the upside potential and thus the parametric method

fills in the downside of the distribution, even when no downside has yet been observed. All

methods lose power as the time-horizon increases, and this is very natural.

We compare the violation ratios of the securities and the portfolio when estimation of beta

was made using the Ordinary and the Weighted method. It seems that the Ordinary method

performs better than Weighted method, Tables (17) and (18).

31This is the point when the index stopped going up and started sliding down.
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Method nVaR1 pVaR1 nVaR2 pVaR2 nVaR3 pVaR3 nVaR4 pVaR4 RiskMetrics

BOC 1-week 0.930 0.972 0.883 0.955 0.928 0.947 0.928 0.933 0.913

2-week 0.890 0.950 0.858 0.948 0.913 0.905 0.891 0.908 0.876

1-month 0.848 0.938 0.805 0.916 0.851 0.851 0.848 0.888 0.827

INF 1-week 0.992 0.999 0.977 0.996 0.953 0.962 0.977 0.982 0.932

2-week 0.979 0.999 0.977 0.990 0.955 0.953 0.975 0.977 0.920

1-month 0.967 0.996 0.955 0.980 0.928 0.928 0.950 0.977 0.906

LPL 1-week 0.984 0.992 0.980 0.987 0.980 0.982 0.982 0.984 0.953

2-week 0.987 0.997 0.985 0.994 0.969 0.965 0.985 0.985 0.935

1-month 0.974 0.990 0.969 0.990 0.953 0.955 0.965 0.972 0.928

Portfolio 1-week 0.853 0.901 0.819 0.885 0.861 0.868 0.859 0.863 0.841

2-week 0.809 0.863 0.784 0.859 0.834 0.827 0.817 0.824 0.799

1-month 0.755 0.822 0.737 0.812 0.770 0.775 0.770 0.795 0.769

BOC 1-week 0.8749 0.9748 0.8851 0.9596 0.8005 0.8039 0.9409 0.9528 0.9240

2-week 0.8512 0.9562 0.8580 0.9342 0.7666 0.7734 0.9020 0.9156 0.9105

1-month 0.8039 0.9426 0.8174 0.9172 0.7142 0.7209 0.7700 0.7836 0.8699

INF 1-week 1.0289 1.0408 1.0256 1.0391 0.9223 0.9223 1.0340 1.0340 0.9359

2-week 1.0188 1.0408 1.0239 1.0391 0.9003 0.9088 1.0154 1.0222 0.9240

1-month 1.0205 1.0425 1.0137 1.0408 0.9071 0.9139 0.9680 0.9731 0.9206

LPL 1-week 0.9917 1.0052 0.9968 1.0002 0.9579 0.9596 1.0036 1.0036 0.9562

2-week 1.0019 1.0086 1.0019 1.0086 0.9528 0.9528 1.0036 1.0069 0.9376

1-month 0.9849 1.0069 0.9883 1.0069 0.9426 0.9426 0.9663 0.9731 0.9172

Portfolio 1-week 0.8123 0.8969 0.8123 0.8919 0.7802 0.7886 0.8665 0.8716 0.8445

2-week 0.7666 0.8614 0.7666 0.8563 0.7649 0.7717 0.8106 0.8208 0.8039

1-month 0.7277 0.8208 0.7328 0.8123 0.7057 0.7226 0.6905 0.6989 0.7734

Table 17: Ordinary: Adjusted 95% VaR test results above over the CSE general index and

below over the sector indexes (Rfree=0.00).

46



Method nVaR1 pVaR1 nVaR2 pVaR2 nVaR3 pVaR3 nVaR4 pVaR4 RiskMetrics

BOC 1-week 0.901 0.953 0.861 0.937 0.918 0.932 0.911 0.920 0.901

2-week 0.868 0.938 0.844 0.928 0.927 0.920 0.879 0.893 0.888

1-month 0.812 0.895 0.797 0.876 0.866 0.869 0.836 0.861 0.846

INF 1-week 0.970 0.979 0.962 0.977 0.942 0.947 0.960 0.962 0.913

2-week 0.960 0.977 0.952 0.975 0.942 0.942 0.948 0.953 0.908

1-month 0.940 0.967 0.938 0.970 0.918 0.925 0.935 0.945 0.905

LPL 1-week 0.990 0.997 0.979 0.990 0.969 0.970 0.977 0.979 0.942

2-week 0.979 0.987 0.977 0.989 0.970 0.969 0.975 0.975 0.937

1-month 0.964 0.970 0.955 0.967 0.952 0.952 0.959 0.964 0.922

Portfolio 1-week 0.854 0.896 0.812 0.871 0.859 0.878 0.851 0.853 0.856

2-week 0.804 0.869 0.789 0.858 0.839 0.834 0.811 0.824 0.802

1-month 0.760 0.824 0.743 0.805 0.795 0.795 0.770 0.794 0.780

BOC 1-week 0.8749 0.9562 0.8749 0.9511 0.7869 0.7869 0.9274 0.9291 0.9037

2-week 0.8326 0.9240 0.8377 0.9223 0.7446 0.7514 0.8936 0.8919 0.8902

1-month 0.7836 0.9274 0.8005 0.9240 0.6955 0.7006 0.7700 0.7717 0.8462

INF 1-week 0.9883 1.0002 0.9799 0.9968 0.8986 0.9003 0.9799 0.9866 0.9088

2-week 0.9883 1.0069 0.9866 1.0052 0.8868 0.8885 0.9883 0.9900 0.8986

1-month 0.9799 1.0002 0.9765 1.0036 0.8699 0.8732 0.9139 0.9291 0.8648

LPL 1-week 1.0052 1.0120 1.0002 1.0137 0.9629 0.9629 1.0103 1.0120 0.9562

2-week 1.0086 1.0103 1.0086 1.0103 0.9646 0.9663 1.0103 1.0120 0.9494

1-month 1.0002 1.0103 1.0036 1.0103 0.9596 0.9612 0.9748 0.9832 0.9392

Portfolio 1-week 0.8259 0.8851 0.8191 0.8699 0.7954 0.7988 0.8665 0.8732 0.8546

2-week 0.7751 0.8648 0.7920 0.8665 0.7700 0.7768 0.8191 0.8276 0.8123

1-month 0.7345 0.8259 0.7497 0.8191 0.7294 0.7429 0.6955 0.7142 0.7886

Table 18: Weighted: Adjusted 95% VaR test results above over the CSE general index and

below over the sector indexes (Rfree=0.00).
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We note that since the portfolio is constructed using equal weights for the securities,

then each security affects the portfolio VaR according to its price. That is, for example, the

proportional VaR, upon the the portfolio VaR, of a security with price equal to 10 will be

greater than the proportional VaR of a security with price equal to 0.50. In Table 19 we

present the range of values of each security.

BOC CLR EURO INF LPL

MIN 1.204 0.439 0.210 0.056 0.162

MAX 10.417 0.920 17.30 0.166 0.369

RANGE 9.213 0.481 17.09 0.110 0.207

Table 19: Range of adjusted for splits prices of each security of the portfolio.

As a result, even thought that each of the small securities (CLR,INF,LPL) has a very high

violation ratio (around 0.99) we do not have a high violation ratio for the portfolio (around

0.90), Table (20).

In addition we note that the CLR and the EURO securities were not estimated against

their sectors, due to the short history of the Financial sector. Instead CLR was excluded of

the backtesting and the EURO was included, but, against the CSE General Index again.

The security with the worst performance in the backtesting is EURO. That is because of

the large number of missing trading values, the large range of prices and the large variance

of the security. An important result is that some securities have greater VaR

violation ratios than the CSE General Index has, Table (20). However the portfolio

is not performing so well, since the contribution of the EURO is very negative. Therefore in

order to justify this observation we perform another backtesting for the portfolio where we

did not include the EURO as as position. As it is shown in tables (21) and (22) when we

compare the performance of the portfolio, using an ordinary method for estimating β and

Rfree = 0.04 the difference between the adjusted 95% VaR results is very significant. As an

example for 1-week time horizon, the VaR result for the portfolio was 0.9214 when the EURO

is excluded from the portfolio, while when the EURO was included the VaR result for the

portfolio was 0.8525.
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Method nVaR1 pVaR1 nVaR2 pVaR2 nVaR3 pVaR3 nVaR4 pVaR4 RiskMetrics

BOC 1-week 0.930 0.972 0.883 0.955 0.928 0.947 0.928 0.933 0.913

2-week 0.890 0.950 0.858 0.948 0.913 0.905 0.891 0.908 0.876

1-month 0.848 0.938 0.805 0.916 0.851 0.851 0.848 0.888 0.827

CLR 1-week 1.021 1.026 1.017 1.021 1.006 1.009 1.016 1.017 0.980

2-week 1.014 1.017 1.011 1.019 1.001 0.999 1.004 1.006 0.965

1-month 1.006 1.009 1.004 1.009 0.989 0.989 1.004 1.007 0.959

EURO 1-week 0.748 0.789 0.720 0.784 0.733 0.750 0.725 0.743 0.723

2-week 0.695 0.755 0.671 0.745 0.733 0.737 0.708 0.720 0.706

1-month 0.666 0.718 0.647 0.701 0.688 0.693 0.668 0.686 0.671

INF 1-week 0.992 0.999 0.977 0.996 0.953 0.962 0.977 0.982 0.932

2-week 0.979 0.999 0.977 0.990 0.955 0.953 0.975 0.977 0.920

1-month 0.967 0.996 0.955 0.980 0.928 0.928 0.950 0.977 0.906

LPL 1-week 0.984 0.992 0.980 0.987 0.980 0.982 0.982 0.984 0.953

2-week 0.987 0.997 0.985 0.994 0.969 0.965 0.985 0.985 0.935

1-month 0.974 0.990 0.969 0.990 0.953 0.955 0.965 0.972 0.928

Portfolio 1-week 0.853 0.901 0.819 0.885 0.861 0.868 0.859 0.863 0.841

2-week 0.809 0.863 0.784 0.859 0.834 0.827 0.817 0.824 0.799

1-month 0.755 0.822 0.737 0.812 0.770 0.775 0.770 0.795 0.769

CSE G.I. 1-week 0.888 0.947 0.864 0.940 0.900 0.908 0.900 0.910 0.874

2-week 0.853 0.932 0.827 0.903 0.863 0.859 0.856 0.863 0.827

1-month 0.770 0.854 0.748 0.839 0.805 0.809 0.784 0.824 0.797

Table 20: General Index-Ordinary: Adjusted 95% VaR test results (Rfree=0.00).
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Method nVaR1 pVaR1 nVaR2 pVaR2 nVaR3 pVaR3 nVaR4 pVaR4 RiskMetrics

1-week 0.9214 0.9651 0.8811 0.9584 0.9197 0.9382 0.9231 0.9349 0.9080

2-week 0.8861 0.9450 0.8508 0.9197 0.9063 0.9012 0.8912 0.8962 0.8710

1-month 0.8323 0.9147 0.7886 0.8962 0.8441 0.8458 0.8474 0.8743 0.8189

1-week 0.8525 0.9063 0.8239 0.8878 0.8609 0.8676 0.8659 0.8676 0.8407

2-week 0.8054 0.8659 0.7802 0.8609 0.8340 0.8273 0.8155 0.8239 0.7987

1-month 0.7566 0.8256 0.7264 0.8037 0.7701 0.7751 0.7566 0.7970 0.7684

Table 21: Ordinary: Adjusted 95% VaR test results for the portfolio over the CSE general

index. Above in the portfolio the EURO is excluded while below is included (Rfree=0.04).

Method nVaR1 pVaR1 nVaR2 pVaR2 nVaR3 pVaR3 nVaR4 pVaR4 RiskMetrics

1-week 0.8710 0.9651 0.8626 0.9534 0.7819 0.7819 0.9265 0.9366 0.9063

2-week 0.8390 0.9416 0.8390 0.9281 0.7482 0.7550 0.8996 0.9097 0.8962

1-month 0.7903 0.9281 0.7970 0.9029 0.6826 0.6860 0.7583 0.7667 0.8508

1-week 0.8138 0.8861 0.8004 0.8727 0.7751 0.7835 0.8575 0.8609 0.8390

2-week 0.7650 0.8592 0.7701 0.8424 0.7600 0.7667 0.8121 0.8172 0.7987

1-month 0.7180 0.8189 0.7247 0.8071 0.7011 0.7180 0.6894 0.6961 0.7684

Table 22: Ordinary: Adjusted 95% VaR test results for the portfolio over the sector indexes.

Above in the portfolio the EURO is excluded while below is included (Rfree=0.04).

An initial assumption for the phenomenon that some securities performed better that the

CSE general index was, due to the value used for the risk-free rate (Rf=0)32 we had those

results. However, when we backtest with Rf=0.04 and compared the results to the ones with

Rf=0, no systematic change of the violation ration is appeared33 , Table (23). For example

the violation ratio for BOC using method nV aR1, with time horizon 1-week and Rf=0.00 is

0.930 and the corresponding with Rf=0.04 is 0.9248, while for INF with Rf=0.00 is 0.992

and the corresponding with Rf=0.04 is 0.9971. As a result the existence of an interest

term structure is imperative.
32The value of Rf=0 does not however affects the estimation of CAPM betas.
33That is the violation ratio with Rf=0.04 was sometimes greater and some other time was less the corre-

sponding violation with Rf=0.
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Rf=0.00 Method nVaR1 pVaR1 nVaR2 pVaR2 nVaR3 pVaR3 nVaR4 pVaR4 RiskMetrics

BOC 1-week 0.930 0.972 0.883 0.955 0.928 0.947 0.928 0.933 0.913

2-week 0.890 0.950 0.858 0.948 0.913 0.905 0.891 0.908 0.876

1-month 0.848 0.938 0.805 0.916 0.851 0.851 0.848 0.888 0.827

INF 1-week 0.992 0.999 0.977 0.996 0.953 0.962 0.977 0.982 0.932

2-week 0.979 0.999 0.977 0.990 0.955 0.953 0.975 0.977 0.920

1-month 0.967 0.996 0.955 0.980 0.928 0.928 0.950 0.977 0.906

Rf=0.04 Method nVaR1 pVaR1 nVaR2 pVaR2 nVaR3 pVaR3 nVaR4 pVaR4 RiskMetrics

BOC 1-week 0.9248 0.9719 0.8778 0.9601 0.9282 0.9467 0.9265 0.94 0.9131

2-week 0.8946 0.9585 0.8508 0.9433 0.9131 0.9047 0.8979 0.9063 0.8761

1-month 0.8508 0.9332 0.8071 0.9147 0.8508 0.8508 0.8542 0.8828 0.8273

INF 1-week 0.9971 1.0005 0.9753 1.0022 0.9534 0.9618 0.9854 0.9854 0.9316

2-week 0.9786 1.0039 0.977 1.0005 0.9551 0.9534 0.9719 0.9803 0.9198

1-month 0.9719 0.9955 0.9433 0.982 0.9282 0.9282 0.9534 0.9736 0.9063

Table 23: General Index-Ordinary: Compare the adjusted 95% VaR test results when

Rfree=0.00 and Rfree=0.04.

We now compare the VaR violation ratios estimated using only local information to using

both local and foreign information. As already mentioned in sections 6.2.3 and 6.2.4, when

historical simulation is considered we use additional foreign information when the market

index is considered to be the CSE general index. On the other hand no foreign information

is used when the market index is considered to be the sector indexes. Therefore we compare

the violation ratios of EURO which in both simulations is considering as a market index the

CSE general index. As a result we see in Table (24) that the violation ratio for method 1

using foreign information is bigger than the corresponding one where no foreign information

is used. On the other hand, method 2 and RiskMetrics are performing better when no

foreign information are used. For the RiskMetrics method, that is happening because of the

correlation considered between the sector indexes when the covariance matrix is generated.
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nVaR1 pVaR1 nVaR2 pVaR2 RiskMetrics

Foreign 1-week 0.75 0.79 0.72 0.78 0.72

information 2-week 0.70 0.76 0.67 0.75 0.71

used 1-month 0.67 0.72 0.65 0.70 0.67

No foreign 1-week 0.74 0.78 0.73 0.78 0.73

information 2-week 0.69 0.75 0.68 0.74 0.72

used 1-month 0.66 0.71 0.65 0.70 0.70

Table 24: Compare the VaR violation ratios estimated for EURO using only local information

to using both local and foreign information : Adjusted 95% VaR test results (Rfree=0.0).

Finally we present the results for the portfolio when the BOC was excluded from the

backtesting. As a result the adjusted violation ratios were not very high (99 % VaR for 1

week is 0.8713) as it should be expected for the reasons described before.

Method nVaR1 pVaR1 nVaR2 pVaR2 nVaR3 pVaR3 nVaR4 pVaR4 RiskMetrics

1-week 0.7936 0.8289 0.7516 0.8138 0.7684 0.7835 0.7802 0.7869 0.7566

2-week 0.7398 0.7987 0.7146 0.7936 0.7718 0.7718 0.7348 0.7465 0.7415

1-month 0.7062 0.7516 0.6726 0.7432 0.7146 0.7196 0.7096 0.7280 0.6961

1-week 0.8713 0.8681 0.8213 0.8551 0.8439 0.8390 0.8374 0.8342 0.8132

2-week 0.8261 0.8535 0.7938 0.8406 0.8003 0.8164 0.8261 0.8084 0.7874

1-month 0.7567 0.8261 0.7244 0.8116 0.7696 0.7761 0.7890 0.7825 0.7599

Table 25: General Index-Ordinary: The adjusted 95% (above) and 95% (below) VaR test

results for the portfolio when BOC is excluded and Rfree=0.04.
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7 Conclusion

This report has provided a comprehensive study of the equity risk of the portfolio of the

Cyprus Development Bank. In particular, we would like to draw attention to the following

general conclusions:

1) The short time series of particular variables (CLR, LPL, Financial Index) greatly

detracts from the application of quantitative techniques for risk management. This should

improve with time. 2) The low liquidity of many of the investments makes reliance solely on

the history of their values questionable (e.g. some securities have numerous dates upon which

they were not transacted: EURO, CLR). Different methods for adjusting the risk measures

for the lack of liquidity should be investigated. 3) The quantitative methods presented in this

paper provide a solid foundation for an investigation of the risk of the (traded) equity portfolio

of the Cyprus Development Bank. However, they should not be regarded as a panacea. Any

quantitative tools for risk management must be supplemented with qualitative tools, such as

scenario analysis (reference BIS paper from www.gloriamundi.org) Quantitative tools are not

a substitute for good managerial judgement.

The tools presented in this report provide one building block in the development of an

effective risk management system for an emerging market. Other components are being

developed at RiskLab Cyprus, including models for non-traded equities, credit risk of loan

portfolios and interest rate risk. These components together will constitute a comprehensive

risk management system, tailored to the needs of Cypriot financial institutions.
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A Volatility Models and Estimation Methods

Here we present the GARCH(1,1) model estimation using Maximum Likelihood. Consider

the GARCH(1,1) model with µt equal to zero

rt = σtεt, εt|Ft−1 ∼ N(0, 1) (56)

or equivalently

rt = εt, εt|Ft−1 ∼ N(0, σ2
t ) (57)

where

σ2
t = ω + αε2

t−1 + βσ2
t−1 ≡ zT

t .ϑ (58)

zT
t = [1 ε2

t−1 σ2
t−1] , ϑT = [ω α β] (59)

The density function of the returns is

f(rt|Ft−1) =
1√
2πσ2

t

e
− 1

2

r2
t

σ2
t (60)

=
1√
2πσ2

t

e
− 1

2

ε2t
σ2

t (61)

and therefore the contribution of observation t to the log-likelihood is `t(ϑ) and the maximum

likelihood estimates ϑ̂ are obtained by the maximization of LT (ϑ).

`t(ϑ) = −1
2

[
ln(2π) + ln(σ2

t ) +
ε2
t

2σ2
t

]
(62)

LT (ϑ) =
T∑

t=1

`t(ϑ) (63)

Differentiating with respect to ϑ yields yields the score function st(ϑ) of the tth observation.

st(ϑ) =
∂`t

∂ϑ
= − 1

2σ2
t

∂σ2
t

∂ϑ
+

ε2
t

2[σ2
t ]2

∂σ2
t

∂ϑ
=

1
2σ2

t

∂σ2
t

∂ϑ

(
ε2
t

σ2
t

− 1
)

(64)

ST (ϑ) =
T∑

t=1

st(ϑ) (65)

where

∂σ2
t

∂ϑ
= zt +

∂zT
t

∂ϑ
ϑ (66)

55



∂zT
t

∂ϑ
=

∂

∂ϑ
[1 ε2

t−1 σ2
t−1] =

[
0 0

∂σ2
t−1

∂ϑ

]
(67)

=⇒ ∂σ2
t

∂ϑ
=




∂σ2
t

∂ω

∂σ2
t

∂α

∂σ2
t

∂β




=




1

ε2
t−1

σ2
t−1




+ β
∂σ2

t−1

∂ϑ
(68)

The unconditional variance of εt is equal to the unconditional expected variance 34.That is

var(εt) = E(σ2
t ) and is given by

E(σ2
t ) = E(ω + αε2

t−1 + βσ2
t−1) (69)

= ω + αE(ε2
t−1) + βE(σ2

t−1)) (70)

= ω + αE(σ2
t−1) + βE(σ2

t−1)) (71)

= ω + (α + β)(ω + αE(ε2
t−2) + βE(σ2

t−2)) (72)

= ω

∞∑

i=0

(α + β)i (73)

and since α + β < 1 =⇒

E(σ2
t ) =

ω

1− (α + β)
(74)

Taking the expected volatility to be the initial value of volatility we have

σ2
0 =

ω

1− α− β
(75)

and therefore the initial values of the derivatives with respect to the parameters are

∂σ2
0

∂ω
=

1
1− α− β

(76)

∂σ2
0

∂α
=

∂σ2
0

∂β
=

ω

(1− α− β)2
(77)

In order to compute the variance of the parameters one could consider the Hessian matrix, but

since this is very time-consuming, one should consider the Outer Product matrix (BHHH35)

algorithm. The information matrix can be estimated by

IT (ϑ) =
T∑

t=1

st(ϑ)sT
t (ϑ) (78)

34or namely long-run volatility.
35That is the Berndt, Hall, Hall, Hausman (1974) algorithm.
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and the variance of the parameters is estimated by

var(ϑ̂) = [−IT (ϑ̂)]−1 (79)

Now for the EWMA model we have

σ2
t = (1− λ)ε2

t−1 + λσ2
t−1 (80)

therefore the log-likelihood function `t(λ) and the corresponding score function st(λ) are

`t(λ) = −1
2

[
ln(2π) + ln(σ2

t ) +
ε2
t

2σ2
t

]
(81)

st(λ) =
∂`t

∂λ
= − 1

2σ2
t

∂σ2
t

∂λ
+

ε2
t

2[σ2
t ]2

∂σ2
t

∂λ
=

1
2σ2

t

∂σ2
t

∂λ

(
ε2
t

σ2
t

− 1
)

(82)

where

∂σ2
t

∂λ
= ε2

t−1 + σ2
t−1 + λ

∂σ2
t−1

∂λ
(83)

57



B Regression Analysis

Assume that the values of a measurement (e.g returns of a stock) can be represented as

a linear function of several independent or explanatory variables (e.g. Stock index, inflation,

growth rate), then a mathematical representation of the above relationship could be :

yi = f(x1i, x2i, ...xpi) + εi

= α + β1x1i + β2x2i + ... + βpxpi + εi, i = 1, ..., n. (84)

ŷi = f(x1i, x2i, ...xpi)

= α + β1x1i + β2x2i + ... + βpxpi, i = 1, ..., n. (85)

y =
1
n

n∑

i=1

yi (86)

where yi are the observed values of the measurement, ŷi are the calculated ones, dependent

on the, related to, values of the p variables x1, x2, ...xp, and y is the overall mean of the

observed yi. The error term ε is a random shock -or disturbance, usually drawn from a

Normal distribution, ε ∼ N(0,σ2), and i indices are the n sample observations.

The classical linear regression model consists of a set of assumptions so that the model is

considered suitable for further use. These conditions are:

1. Linear functional form of the relationship.

2. The variance of y is constant for all the different values of xi, that is the variance of y

is independent of the regressors xi, i=1,...,n and σ2
t = σ2.

3. The random shocks are independent.

4. The random shocks are normally distributed.

The components of variance (SST, SSR, and SSE) used thoroughly in the analysis of

variance, are typically shown in an ANOVA table.

SSR Sum of squares due to regression explains the portion of the total variation due to the

linear relationship of y with x.
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SSE Sum of squares of errors explains the portion of total variation due to the deviations

from the linear regression, or the residual variation left unexplained by the regression

line.

SST Total sum of squares is the total variation of y.

MSR Mean square regression is the SSR divided by its degrees of freedom, p-1.

MSE Mean square error is the SSE divided by its degrees of freedom, n-p.

where

SST =
∑n

i=1(yi − y)2 , degrees of freedom n-1,

SSR =
∑n

i=1(ŷi − y)2 , degrees of freedom p-1,

SSE =
∑n

i=1(yi − ŷi)2 , degrees of freedom n-p.

B.1 First-order model

In a single variable estimation model, like the CAPM model, equation (84) is just a line,

yi = α + βxi + εi, i = 1, ..., n. (87)

The yi and xi could be the returns of the stock (dependent) and the market index (indepen-

dent) respectively, α and β the unknown parameters of the model (regression coefficients)

and n is the number of observations. β represents the slope of the regression line and states

the change of the mean of the distribution of y for every unit change of x. α represents the

point where the regression line intercepts the y-axis.

Once the parameters α and β have been estimated the estimated regression function is

ŷi = α̂ + β̂xi, i = 1, ..., n. (88)

and the residuals ε̂i,

ε̂i = yi − ŷi (89)

= yi − α̂− β̂xi (90)

represent the deviation of the observed values of yi and the corresponding estimated one ŷi

(fitted value).
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B.1.1 Ordinary Least Squares

In order to find the best values of α and β we consider the least square estimation (LSE)

method, which involves minimizing, with respect to α and β, the sum of squared errors (SSE).

The ordinary LSE method consists of minimizing

SSE = QOLS (α, β) =
n∑

i=1

ε2
i =

n∑

i=1

(yi − ŷi)2 =
n∑

i=1

(yi − α + βxi)2 (91)

To find the minimum of QOLS (α, β) we differentiate with respect to α and β and set to zero,

dQOLS (α, β)
dα

= 0 and
dQOLS (α, β)

dβ
= 0 (92)

leading to the normal equations - a system of 2 equations and 2 unknowns.

dQOLS (α, β)
dα

= −2
n∑

i=1

(yi − α− βxi) min−−→ 0 =⇒
n∑

i=1

(yi − α̂− β̂xi) = 0 (93)

dQOLS (α, β)
dβ

= −2
n∑

i=1

xi(yi − α− βxi) min−−→ 0 =⇒
n∑

i=1

xi(yi − α̂− β̂xi) = 0 (94)

(93) =⇒
n∑

i=1

(yi)− nα̂− β̂
n∑

i=1

(xi) = 0

=⇒ α̂ =
∑n

i=1(yi)
n

− β̂

∑n
i=1(xi)
n

= y − β̂x (95)

Substituting equation (95) into (94) leads to

n∑

i=1

xi(yi − (y − β̂x)− β̂xi) = 0

=⇒
n∑

i=1

xi[(yi − y)− β̂(xi − x)] = 0

=⇒
n∑

i=1

xi[(yi − y)]− β̂

n∑

i=1

xi[(xi − x)] = 0

=⇒ β̂ =
∑n

i=1 xi[(yi − y)]∑n
i=1 xi[(xi − x)]

=
ĉov(X, Y )
v̂ar(X)

(96)

Therefore, equations (95) and (96) give the least squares estimators of α and β respectively.
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B.1.2 Weighted Least Squares

Sometimes not all measurements are created equal, for example more recent data are

influencing the model greater than older data, and as a consequence we include a weighting

factor. Therefore we minimize

QWLS (α, β) =
n∑

i=1

wiε
2
i =

n∑

i=1

wi(yi − α− βxi)2 (97)

Following the same procedure as in the previous section the weighted least squares estimators

of α and β are

α̂ =
∑n

i=1 wiyi − β̂
∑n

i=1 wixi∑n
i=1 wi

(98)

β̂ =

∑n
i=1 wixiyi −

Pn
i=1 wixi

Pn
i=1 wiyiPn

i=1 wi∑n
i=1 wix2

i − (
Pn

i=1 wixi)2Pn
i=1 wi

(99)

Some choices for wi could be

1. wi = 1, QWLS (α, β) leads to QOLS (α, β).

2. wi = 1
σ2

i
, if standard deviation is known.

3. wi = λi, where λ is the EWMA estimated parameter of the security. This method is

used by RiskMetrics in order to deal with the heteroscedasticity of the returns.

B.2 Analysis of Variance-ANOVA

Once data has been fitted, the fit must be evaluated. There is a variety of statistical

methods to do this. The most commonly used is the analysis of variance of the residuals

(ANOVA).

Consider the deviation of observation yi from the mean y, which is the main measurement

of the variation of the observation:

yi − y. (100)

This can be written as

yi − y = (yi − ŷi) + (ŷi − y), (101)

which means that it is the summation of
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1. the deviation of ŷi from the mean y and

2. the deviation of yi from ŷi.

Taking the squares of (100) and summing over all observations leads to

n∑

i=1

(yi − y)2 =
n∑

i=1

(yi − y ± ŷi)2

=
n∑

i=1

(ŷi − y)2 +
n∑

i=1

(yi − ŷi)2 + 2
n∑

i=1

(ŷi − y)(yi − ŷi)

=⇒ (104) =⇒ =
n∑

i=1

(ŷi − y)2 +
n∑

i=1

(yi − ŷi)2 + 2
n∑

i=1

β̂(xi − x)(yi − ŷi)

=⇒ (102), (103) =⇒ =
n∑

i=1

(ŷi − y)2 +
n∑

i=1

(yi − ŷi)2 + 2β̂

n∑

i=1

xi(yi − ŷi)− 2β̂x

n∑

i=1

(yi − ŷi).

Therefore rewrite the normal equations (93) and (94)36 and substitute

n∑

i=1

(yi − y)2 =
n∑

i=1

(ŷi − y)2 +
n∑

i=1

(yi − ŷi)2 (105)

which is

SST = SSR + SSE. (106)

This relationship states that the total variation of yi is composed of the deviation due to the

model used (SSR) and the variation due to errors (SSE).

The above theory is summarized in the following table, known as an ANOVA table.

36Rewrite the normal equations (93),(94),

(93) =⇒
nX

i=1

(yi − bα− bβxi) =

nX
i=1

(yi − byi) = 0 (102)

(94) =⇒
nX

i=1

xi(yi − bα− bβxi) =

nX
i=1

xi(yi − byi) = 0 (103)

and also rewrite (byi − y) = bα + bβxi − y = y − bβx + bβxi − y = bβ(xi − x) (104)
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Sum Squares degrees of freedom Mean Square

Regression SSR=
Pn

i=1(byi − y)2 p-1 MSR=SSR
p−1

Error SSE=
Pn

i=1(yi − byi)
2 n-p MSE=SSE

n−p

Total Variation SST=
Pn

i=1(yi − y)2 n-1

Table 26: ANOVA Table.

B.3 Distribution of the estimated parameters

The equivalent matrix formation is

Y = Xβ + ε (107)

where

Y =




y1

y2

:

yn




, X =




1 X11 X21 ... Xk1

1 X12 X22 ... Xk2

: : :

1 X1n X2n ... Xkn




, β =




α

β1

:

βk




, ε =




ε1

ε2

:

εn




and the analogous estimation equations of the parameters and the variance of them 37 and

the variance of β are given by

β̂ = (XT X)−1XT Y (108)

var(β̂) = σ2(XT X)−1 (109)

and asymptotically β̂ is an unbiased estimator of β. In addition β̂ ( if ε ∼ N() ) is normally

distributed,

β̂ ∼ N(β, var(β)), which implies that
β̂ − β√
var(β)

∼ N(0, 1). (110)

Due to the estimation of two parameters (α, β =⇒ p=2 ) the degrees of freedom of SSE

are reduced to n-2. Therefore an unbiased estimator for σ2, referred as MSE, is given by

v̂ar(β) = MSE =
SSE

n− 2
. (111)

37Equation (108) is the general form, in matrix representation, of equations (95) and (96).
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B.4 Hypotheses testing

For a usual regression analysis the model is

ŷi = α̂ + β̂xi, i = 1, ..., n. (112)

while the null hypotheses and the alternatives are

H1
0 : α = 0 V s H1

1 : α 6= 0 (113)

H2
0 : β = 0 V s H2

1 : β 6= 0 (114)

B.4.1 t-test

The above null hypotheses are checked with the t-statistics

t1 =
α̂√

v̂ar(α̂)
, t2 =

β̂√
v̂ar(β̂)

(115)

respectively. Under the null hypotheses the distributions of the statistics are

α̂√
v̂ar(α)

∼ tn−2 ,
β̂√

v̂ar(β)
∼ tn−2. (116)

following the statements in the above section. The null hypotheses are rejected, at a confidence

level a%, if

|ti| > tn−2(a
2 ), i = 1, 2. (117)

To do so the p-value of the test is provided, and if the p-value is less than the confidence level

then the null hypothesis is rejected

B.4.2 F-test

The alternative hypothesis H2
1 is equivalent to the hypothesis that there is no linear

relationship, and it can also be tested by an analysis of variance procedure. The F-statistic

defined by

F =
MSR

MSE
(118)
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is used for testing the models (significance). Under H2
0 the distribution of the F-statistic is

MSR

MSE
∼ F1,n−2 (119)

and therefore, if the observed significance level for the F-test is small, the hypothesis that

there is no linear relationship can be rejected.

B.4.3 Coefficient of Determination R2

The coefficient of determination R2, defined as

R2 =
SSR

SST
(120)

is a measure of the fit of the model. It measures the proportion of the total variation in y

that is accounted for by the regressors. If we assume that the values of y vary linearly with x,

then the total variation is due to the regression and is given by SSR. If that is perfectly true,

then R2 will equal 1. If the data are scattered about the line, the value of R2 will decrease.

B.4.4 Durbin-Watson (DW ) test

One of the assumptions of regression analysis is that the residuals for consecutive obser-

vations are uncorrelated. The Durbin-Watson (DW ) test checks for serially correlated (or

autocorrelated) residuals. The test statistic is calculated from the LSE estimated residuals ε̂i

as:

DW =
n∑

i=2

(ε̂i − ε̂i−1)2/
n∑

i=1

(ε̂i)2 (121)

The DW -statistic has values in the range [0,4]. If the assumption of uncorrelated residuals is

true then the expected value of the Durbin-Watson statistic is 2. Values less than 2 indicate

positive autocorrelation while values greater than 2 indicate negative autocorrelation.
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C Estimated CAPM parameter

In this section we present the estimated β and then a further analysis of variance for the

securities of the portfolio is shown.

The Beta estimates against the Banks Index for Bank of Cyprus (BOC)
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Figure 19: Beta estimates of BOC against the Banks Index.
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The Beta estimates against the CSE General Index for Euroinvestment (EURO)
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Figure 20: Beta estimates of EURO against the CSE General Index.

The Beta estimates against the Finance Index for Euroinvestment
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Figure 21: Beta estimates of EURO against the Finance Index.
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The beta estimates against the CSE General Index for CLR 
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Figure 22: Beta estimates of CLR against the CSE General Index.

The Beta estimates against the Finance Index for CLR
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Figure 23: Beta estimates of CLR against the Finance Index.

68



The betas estimates against the CSE General Index for Intefund (INF) 
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Figure 24: Beta estimates of INF against the CSE General Index.

The Beta estimates against the Investment Index for Interfund
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Figure 25: Beta estimates of INF against the Investment Index.
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The Beta estimates against the CSE General Index for Lordos United Plastics (LPL)
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Figure 26: Beta estimates of LPL against the CSE General Index.

The Beta estimates against the Manufacturing Index for United Plastics
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Figure 27: Beta estimates of LPL against the Manufacturing Index.
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C.1 ANOVA of the securities of the portfolio

BOC : The R2 for BOC against the CSE General Index is very large (for Period 3 R2=

0.907, Table (30)) which indicates that the market is strongly related to BOC. Moreover the

R2 is even bigger when it is estimated against the Banks sector, Table (34). The small St.

Dev. of β̂ indicates that the true beta for BOC ranges in a very small interval.

The Durbin-Watson test against the Banks Index is close to 2 indicating that the residuals

are uncorrelated for consecutive observations (lag 1), while against the CSE general index is

less than 2 indicating a positive correlation.

CLR : The R2 is close to 0.5 and therefore the model explains the half of the variation

of the dependent security return, Tables (36), (35). However, the small value of St. Dev.

indicates that the estimated parameter is a reliable one. In addition DW is close to 2.

EURO : The R2 is close to 0.25 indicating that the security have more specific risk than

market risk, Table (37). The St. Dev. is small for the whole history, against the CSE general

index, while against the Finance index is bigger38. DW is close to 2.

INF : The R2 is greater against the CSE General index, (close to 0.5) indicating that the

market is explaining better than the sector the variation of this security returns, Tables (42),

(43). The small value of St. Dev. (0.09) indicates that the estimated parameter is a reliable

one. Again DW is very close to 2.

LPL : The R2 is small (0.2) and there is a negative correlation within consecutive residual,

DW > 2, Tables (44), (15). Moreover the high St. Dev. (0.22) implies that the estimated

parameter is not so reliable since the true value of β̂ ranges from 0.42 to 1.27.

38That is because of the short history of the finance index.
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History Sum Squares d.f. Mean Square F-statistic sign. R2

Weighted SSR 0.01 1 0.01 2436.571 0 0.645

SSE 0.01 1341 5.85×10−7

SST 0.02 1342

Ordinary SSR 0.797 1 0.797 7605.81 0 0.85

SSE 0.14 1341 0.000104

SST 0.937 1342

Estimate St. Dev t-statistic sign Durbin-Watson

Weighted bα -3.64×10−4 0.00245 -1.483 0.138 2.421bβ 0.617 0.013 49.362 0

Ordinary bα -1.13×10−4 0.0027 -0.405 0.686 1.73bβ 1.072 0.012 87.211 0

Table 27: Analysis of variance for BOC against the CSE general index for the whole history.

Period 1 Sum Squares d.f. Mean Square F-statistic sign. R2

Weighted SSR 0.004 1 0.004 1238.93 0 0.609

SSE 0.003 796 3×10−6

SST 0.007 797

Ordinary SSR 0.09 1 0.09 1572.178 0 0.655

SSE 0.047 796 6 ×10−5

SST 0.137 797

Estimate St. Dev t-statistic sign Durbin-Watson

Weighted bα -3.4×10−3 0.00049 -6.913 0 1.8876bβ 1.23 0.035 35.199 0

Ordinary bα 7.24×10−5 0.0001 0.265 0.791 1.96bβ 1.114 0.029 38.887 0

Table 28: Analysis of variance for BOC against the CSE general index for period 1.
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Period 2 Sum Squares d.f. Mean Square F-statistic sign. R2

Weighted SSR 0.0025 1 0.0002 1564.37 0 0.849

SSE 0.0005 279 1.58×10−6

SST 0.003 280

Ordinary SSR 0.586 1 0.586 273155 0 0.907

SSE 0.06 279 0.00021

SST 0.646 280

Estimate St. Dev t-statistic sign Durbin-Watson

Weighted bα -6.47×10−4 0.01 -0.934 0.351 1.8876bβ 1.284 0.032 39.522 0

Ordinary bα -7.1×10−4 0.01 -0.811 0.418 1.623bβ 1.083 0.021 52.264 0

Table 29: Analysis of variance for BOC against the CSE general index for period 2.

Period 3 Sum Squares d.f. Mean Square F-statistic sign. R2

Weighted SSR 8.41 1 8.41×10−5 259.863 0 0.499

SSE 8.45 261 3.23×10−7

SST 0.000168 262

Ordinary SSR 0.118 1 0.118 953.74 0 0.785

SSE 0.032 261 0.00012

SST 0.15 262

Estimate St. Dev t-statistic sign Durbin-Watson

Weighted bα 3.17×10−3 0.00036 8.797 0 1.96bβ 0.469 0.029 16.12 0

Ordinary bα -3.56×10−4 0.001 -0.517 0.606 1.67bβ 1.002 0.032 30.883 0

Table 30: Analysis of variance for BOC against the CSE general index for period 3.

73



History Sum Squares d.f. Mean Square F-statistic sign. R2

Weighted SSR 0.002 1 0.002 9620.17 0 0.878

SSE 0.0002 1341 2.01×10−7

SST 0.0022 1342

Ordinary SSR 0.843 1 0.843 11994.2 0 0.899

SSE 0.094 1341 7×10−5

SST 0.937 1342

Estimate St. Dev t-statistic sign Durbin-Watson

Weighted bα 1.2×10−4 0.000139 0.89 0.373 2.829bβ 0.876 0.09 98.082 0

Ordinary bα -1.28×10−4 0.002 -0.559 0.577 2.062bβ 0.994 0.009 109.52 0

Table 31: Analysis of variance for BOC against the Banks index for the whole history.

Period 1 Sum Squares d.f. Mean Square F-statistic sign. R2

Weighted SSR 0.002 1 0.002 2095.9 0 0.725

SSE 0.001 796 1×10−6

SST 0.003 797

Ordinary SSR 1.01 1 0.101 2206.6 0 0.735

SSE 0.036 796 5×10−5

SST 0.137 797

Estimate St. Dev t-statistic sign Durbin-Watson

Weighted bα -1.22×10−3 0.0003 -3.829 0 1.863bβ 0.959 0.021 45.781 0

Ordinary bα -1.97×10−4 0.00024 -0.82 0.412 2.065bβ 1.01 0.022 46975 0

Table 32: Analysis of variance for BOC against the Banks index for period 1.
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Period 2 Sum Squares d.f. Mean Square F-statistic sign. R2

Weighted SSR 0.002 1 0.002 827.95 0 0.748

SSE 0.001 279 2.6×10−6

SST 0.003 280

Ordinary SSR 0.6 1 0.6 3570.68 0 0.928

SSE 0.047 279 0.00016

SST 0.647 280

Estimate St. Dev t-statistic sign Durbin-Watson

Weighted bα -6.53×10−3 0.01 -8.219 0 1.867bβ 0.474 0.016 228.774 0

Ordinary bα -6.93×10−5 0.001 -0.09 0.929 2.021bβ 1.001 0.017 59.755 0

Table 33: Analysis of variance for BOC against the CSE Banks index for period 2.

Period 3 Sum Squares d.f. Mean Square F-statistic sign. R2

Weighted SSR 0.00014 1 0.00014 1997.5 0 0.884

SSE 1.95 262 7.5×10−8

SST 0.00016 263

Ordinary SSR 0.139 1 0.139 3452.6 0 0.929

SSE 0.011 262 4×10−5

SST 0.15 263

Estimate St. Dev t-statistic sign Durbin-Watson

Weighted bα -1.89×10−3 0.0002 -8.211 0 2.048bβ 1.062 0.0024 44693 0

Ordinary bα -1.55×10−4 0.0001 -3.92 0.695 2.209bβ 0.955 0.016 58.529 0

Table 34: Analysis of variance for BOC against the Banks index for period3.
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Sum Squares d.f. Mean Square F-statistic sign. R2

Weighted SSR 0.001 1 0.001 100.668 0 0.388

SSE 0.002 159 1.18×10−5

SST 0.003 160

Ordinary SSR 0.058 1 0.058 128.33 0 0.447

SSE 0.071 159 0.00044

SST 0.129 160

Estimate St. Dev t-statistic sign Durbin-Watson

Weighted bα -2.33×10−3 0.0002 -1.327 0.187 2.323bβ 1.128 0.112 10.033 0

Ordinary bα 1.85×10−3 0.02 1.11 0.269 1.936bβ 0.927 0.082 11.328 0

Table 35: Analysis of variance for CLR against the CSE general index for the whole history.

Sum Squares d.f. Mean Square F-statistic sign. R2

Weighted SSR 0.002 1 0.002 158.773 0 0.5

SSE 0.002 159 9.68×10−6

SST 0.004 160

Ordinary SSR 0.068 1 0.068 174.69 0 0.524

SSE 0.061 159 0.00038

SST 0.129 160

Estimate St. Dev t-statistic sign Durbin-Watson

Weighted bα 1.87×10−4 0.001 0.127 0.899 2.62bβ 0.843 0.067 12.601 0

Ordinary bα -2.4×10−4 0.002 -0.16 0.873 2.082bβ 0.823 0.062 13.217 0

Table 36: Analysis of variance for CLR against the Finance index for the whole history.
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History Sum Squares d.f. Mean Square F-statistic sign. R2

Weighted SSR 0.016 1 0.016 202.84 0 0.178

SSE 0.074 936 7.9×10−5

SST 0.09 937

Ordinary SSR 0.573 1 0.573 2257.07 0 0.215

SSE 2.086 936 0.002

SST 2.659 937

Estimate St. Dev t-statistic sign Durbin-Watson

Weighted bα 6.007×10−3 0.002 2.979 0.03 2.505bβ 1.089 0.077 14.22 0

Ordinary bα -1.12×10−4 0.002 -0.73 0.942 1.987bβ 1.022 0.064 16.033 0

Table 37: Analysis of variance for EURO against the CSE general index for the whole history.

period 1 Sum Squares d.f. Mean Square F-statistic sign. R2

Weighted SSR 0.038 1 0.038 47.939 0 0.103

SSE 0.332 418 0.001

SST 0.37 419

Ordinary SSR 0.038 1 0.038 47.939 0 0.103

SSE 0.332 418 0.001

SST 0.37 419

Estimate St. Dev t-statistic sign Durbin-Watson

Weighted bα 1.54×10−3 0.001 1.115 0.264 1.989bβ 0.765 0.11 6.924 0

Ordinary bα 1.54×10−3 0.001 1.115 0.264 1.989bβ 0.765 0.11 6.924 0

Table 38: Analysis of variance for EURO against the CSE general index for period 1.
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period 2 Sum Squares d.f. Mean Square F-statistic sign. R2

Weighted SSR 0.021 1 0.021 145.23 0 0.342

SSE 0.041 279 0.00041

SST 0.062 280

Ordinary SSR 0.363 1 0.363 94.325 0 0.254

SSE 1.073 279 0.004

SST 1.435 280

Estimate St. Dev t-statistic sign Durbin-Watson

Weighted bα 2.66×10−2 0.006 4.094 0 1.626bβ 2.707 0.225 12.051 0

Ordinary bα 5.11×10−4 0.004 0.138 0.89 1.885bβ 1.031 0.106 9.712 0

Table 39: Analysis of variance for EURO against the CSE general index for period 2.

period 2 Sum Squares d.f. Mean Square F-statistic sign. R2

Weighted SSR 0.002 1 0.002 14.001 0 0.056

SSE 0.023 235 9.92×10−5

SST 0.025 236

Ordinary SSR 0.167 1 0.167 58.296 0 0.199

SSE 0.673 235 0.003

SST 0.84 240

Estimate St. Dev t-statistic sign Durbin-Watson

Weighted bα 2.58×10−2 0.005 5.272 0 2.568bβ 0.919 0.267 3.742 0

Ordinary bα -3.06×10−3 0.004 -0.873 0.383 1.929bβ 1.097 0.144 7.635 0

Table 40: Analysis of variance for EURO against the CSE general index for period 3.
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Period 3 Sum Squares d.f. Mean Square F-statistic sign. R2

Weighted SSR 0.01 1 0.01 6.799 0.01 0.027

SSE 0.24 244 9.92×10−5

SST 0.25 245

Ordinary SSR 0.2 1 0.2 64.653 0 0.209

SSE 0.795 244 0.003

SST 0.954 245

Estimate St. Dev t-statistic sign Durbin-Watson

Weighted bα 2.9×10−2 0.005 6.366 0 2.481bβ 0.501 0.192 2.067 0.01

Ordinary bα -3.13×10−3 0.004 -0.876 0.382 2.057bβ 0.937 0.117 8.041 0

Table 41: Analysis of variance for EURO against the Finance index for period 3.
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Sum Squares d.f. Mean Square F-statistic sign. R2

Weighted SSR 0.006 1 0.006 211.521 0 0.443

SSE 0.007 266 0.000029

SST 0.013 267

Ordinary SSR 0.212 1 0.212 250.473 0 0.485

SSE 0.225 266 0.001

SST 0.438 267

Estimate St. Dev t-statistic sign Durbin-Watson

Weighted bα -2.83×10−3 0.002 -1.525 0.128 1.351bβ 1.437 0.099 14.544 0

Ordinary bα 2.726×10−3 0.002 1.51 1 1.997bβ 1.342 0.085 15.826 0

Table 42: Analysis of variance for INF against the CSE general index for the whole history.

Sum Squares d.f. Mean Square F-statistic sign. R2

Weighted SSR 0.004 1 0.004 108.567 0 0.29

SSE 0.009 266 3.43×10−5

SST 0.013 267

Ordinary SSR 0.174 1 0.174 175.038 0 0.397

SSE 0.264 266 0.001

SST 0.438 267

Estimate St. Dev t-statistic sign Durbin-Watson

Weighted bα 4.6×10−4 0.002 0.227 0.821 0.121bβ 0.738 0.001 10.42 0

Ordinary bα 1.127×10−3 0.002 1.583 0.56 1.998bβ 1.191 0.09 13.32 0

Table 43: Analysis of variance for INF against the Investment index for the whole history.
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Sum Squares d.f. Mean Square F-statistic sign. R2

Weighted SSR 0.005 1 0.005 23.2 0 0.164

SSE 0.023 118 0.000195

SST 0.028 119

Ordinary SSR 0.049 1 0.049 19.142 0 0.141

SSE 0.3 118 0.003

SST 0.349 119

Estimate St. Dev t-statistic sign Durbin-Watson

Weighted bα 1.78×10−2 0.005 3.68 0 2.151bβ 1.047 0.217 4.817 0

Ordinary bα 3.96×10−4 0.005 0.086 0.932 2.393bβ 0.917 0.208 4.406 0

Table 44: Analysis of variance for LPL against the CSE general index for the whole history.

Sum Squares d.f. Mean Square F-statistic sign. R2

Weighted SSR 0.003 1 0.003 11.793 0.01 0.091

SSE 0.025 118 0.0002

SST 0.028 119

Ordinary SSR 0.036 1 0.036 13.687 0 0.104

SSE 0.313 118 0.03

SST 0.349 119

Estimate St. Dev t-statistic sign Durbin-Watson

Weighted bα 2.1×10−2 0.005 4.259 0 2.118bβ 0.711 0.207 3.434 0.001

Ordinary bα -1.32×10−3 0.005 -0.28 0.78 2.374bβ 0.846 0.228 3.7 0

Table 45: Analysis of variance for LPL against the Manufacturing index for the whole history.
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D BackTesting Results

The results using as a market index the CSE General index with Rfree=0.0 are shown

initially and then the corresponding results with Rfree=0.04.

BOC : For both Ordinary and Weighted method of estimation of betas, the violation

ratios are not within the specified confidence level, Tables (46), (47). Thus both methods

underestimate the risk.

CLR : The Ordinary method is over-estimating the risk using the parametric methods 1

and 2, while using the Weighted method the violation ratio is always within the specified C.I.

EURO : Here the Weighted method is performing better than the Ordinary method.

INF : The violation ratios are within the C.I. for the Ordinary method. For Weighted

method the violation ratio is under the C.I. .

LPL : The violation ratios for both methods are within the C.I. .
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Method nVaR1 pVaR1 nVaR2 pVaR2 nVaR3 pVaR3 nVaR4 pVaR4 RiskMetrics

BOC 1-week 0.930 0.972 0.883 0.955 0.928 0.947 0.928 0.933 0.913

2-week 0.890 0.950 0.858 0.948 0.913 0.905 0.891 0.908 0.876

1-month 0.848 0.938 0.805 0.916 0.851 0.851 0.848 0.888 0.827

CLR 1-week 1.021 1.026 1.017 1.021 1.006 1.009 1.016 1.017 0.980

2-week 1.014 1.017 1.011 1.019 1.001 0.999 1.004 1.006 0.965

1-month 1.006 1.009 1.004 1.009 0.989 0.989 1.004 1.007 0.959

EURO 1-week 0.748 0.789 0.720 0.784 0.733 0.750 0.725 0.743 0.723

2-week 0.695 0.755 0.671 0.745 0.733 0.737 0.708 0.720 0.706

1-month 0.666 0.718 0.647 0.701 0.688 0.693 0.668 0.686 0.671

INF 1-week 0.992 0.999 0.977 0.996 0.953 0.962 0.977 0.982 0.932

2-week 0.979 0.999 0.977 0.990 0.955 0.953 0.975 0.977 0.920

1-month 0.967 0.996 0.955 0.980 0.928 0.928 0.950 0.977 0.906

LPL 1-week 0.984 0.992 0.980 0.987 0.980 0.982 0.982 0.984 0.953

2-week 0.987 0.997 0.985 0.994 0.969 0.965 0.985 0.985 0.935

1-month 0.974 0.990 0.969 0.990 0.953 0.955 0.965 0.972 0.928

Portfolio 1-week 0.853 0.901 0.819 0.885 0.861 0.868 0.859 0.863 0.841

2-week 0.809 0.863 0.784 0.859 0.834 0.827 0.817 0.824 0.799

1-month 0.755 0.822 0.737 0.812 0.770 0.775 0.770 0.795 0.769

CSE G.I. 1-week 0.888 0.947 0.864 0.940 0.900 0.908 0.900 0.910 0.874

2-week 0.853 0.932 0.827 0.903 0.863 0.859 0.856 0.863 0.827

1-month 0.770 0.854 0.748 0.839 0.805 0.809 0.784 0.824 0.797

Table 46: General Index-Ordinary: Adjusted 95% VaR test results (Rfree=0.0).
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Method nVaR1 pVaR1 nVaR2 pVaR2 nVaR3 pVaR3 nVaR4 pVaR4 RiskMetrics

BOC 1-week 0.901 0.953 0.861 0.937 0.918 0.932 0.911 0.920 0.901

2-week 0.868 0.938 0.844 0.928 0.927 0.920 0.879 0.893 0.888

1-month 0.812 0.895 0.797 0.876 0.866 0.869 0.836 0.861 0.846

CLR 1-week 1.002 1.006 1.001 1.002 0.996 0.996 1.001 1.004 0.965

2-week 0.996 0.999 0.990 0.997 0.990 0.990 0.984 0.985 0.957

1-month 0.980 0.996 0.979 0.992 0.965 0.967 0.975 0.980 0.933

EURO 1-week 0.774 0.811 0.755 0.797 0.785 0.797 0.769 0.774 0.763

2-week 0.723 0.770 0.705 0.758 0.772 0.767 0.732 0.742 0.742

1-month 0.703 0.755 0.686 0.750 0.730 0.738 0.703 0.737 0.721

INF 1-week 0.970 0.979 0.962 0.977 0.942 0.947 0.960 0.962 0.913

2-week 0.960 0.977 0.952 0.975 0.942 0.942 0.948 0.953 0.908

1-month 0.940 0.967 0.938 0.970 0.918 0.925 0.935 0.945 0.905

LPL 1-week 0.990 0.997 0.979 0.990 0.969 0.970 0.977 0.979 0.942

2-week 0.979 0.987 0.977 0.989 0.970 0.969 0.975 0.975 0.937

1-month 0.964 0.970 0.955 0.967 0.952 0.952 0.959 0.964 0.922

Portfolio 1-week 0.854 0.896 0.812 0.871 0.859 0.878 0.851 0.853 0.856

2-week 0.804 0.869 0.789 0.858 0.839 0.834 0.811 0.824 0.802

1-month 0.760 0.824 0.743 0.805 0.795 0.795 0.770 0.794 0.780

CSE G.I. 1-week 0.893 0.955 0.861 0.937 0.908 0.916 0.905 0.903 0.886

2-week 0.858 0.932 0.829 0.908 0.881 0.873 0.861 0.864 0.846

1-month 0.770 0.842 0.748 0.848 0.814 0.817 0.785 0.814 0.805

Table 47: General Index-Weighted: Adjusted 95% VaR test results (Rfree=0.0).
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Method nVaR1 pVaR1 nVaR2 pVaR2 nVaR3 pVaR3 nVaR4 pVaR4 RiskMetrics

BOC 1-week 0.973 0.975 0.942 0.971 0.950 0.947 0.967 0.962 0.918

2-week 0.981 0.991 0.934 0.975 0.931 0.934 0.952 0.957 0.904

1-month 0.950 0.997 0.902 0.988 0.900 0.904 0.967 0.954 0.881

CLR 1-week 0.991 0.991 0.986 0.988 0.983 0.983 0.988 0.988 0.950

2-week 0.986 0.988 0.979 0.986 0.968 0.975 0.981 0.983 0.944

1-month 0.973 0.976 0.970 0.975 0.965 0.967 0.973 0.973 0.939

EURO 1-week 0.836 0.834 0.781 0.818 0.810 0.805 0.802 0.800 0.779

2-week 0.787 0.815 0.757 0.813 0.765 0.781 0.781 0.765 0.750

1-month 0.723 0.778 0.686 0.771 0.734 0.739 0.760 0.742 0.720

INF 1-week 0.984 0.984 0.979 0.979 0.962 0.962 0.971 0.971 0.931

2-week 0.971 0.983 0.965 0.976 0.946 0.952 0.973 0.968 0.921

1-month 0.971 0.983 0.950 0.976 0.946 0.946 0.970 0.968 0.921

LPL 1-week 0.981 0.983 0.973 0.978 0.954 0.952 0.965 0.963 0.925

2-week 0.976 0.984 0.968 0.983 0.954 0.957 0.973 0.970 0.925

1-month 0.965 0.978 0.955 0.981 0.938 0.938 0.965 0.965 0.913

Portfolio 1-week 0.918 0.933 0.879 0.926 0.899 0.892 0.910 0.902 0.867

2-week 0.904 0.926 0.852 0.917 0.863 0.871 0.881 0.873 0.842

1-month 0.857 0.907 0.804 0.894 0.834 0.844 0.876 0.862 0.825

CSE G.I. 1-week 0.975 0.983 0.934 0.970 0.931 0.926 0.954 0.947 0.897

2-week 0.954 0.971 0.907 0.960 0.886 0.899 0.936 0.928 0.873

1-month 0.883 0.946 0.818 0.929 0.858 0.863 0.918 0.905 0.849

Table 48: General Index-Ordinary: Adjusted 99% VaR test results (Rfree=0.0).
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Method nVaR1 pVaR1 nVaR2 pVaR2 nVaR3 pVaR3 nVaR4 pVaR4 RiskMetrics

BOC 1-week 0.970 0.968 0.933 0.954 0.955 0.955 0.952 0.941 0.923

2-week 0.965 0.975 0.907 0.955 0.929 0.939 0.957 0.944 0.908

1-month 0.938 0.979 0.863 0.971 0.900 0.904 0.944 0.938 0.883

CLR 1-week 0.975 0.975 0.970 0.968 0.967 0.967 0.970 0.970 0.934

2-week 0.967 0.970 0.962 0.968 0.955 0.955 0.968 0.963 0.923

1-month 0.963 0.967 0.957 0.963 0.941 0.942 0.965 0.963 0.915

EURO 1-week 0.849 0.852 0.812 0.833 0.844 0.844 0.829 0.813 0.812

2-week 0.820 0.842 0.771 0.826 0.807 0.815 0.812 0.799 0.787

1-month 0.770 0.812 0.729 0.799 0.768 0.783 0.794 0.781 0.773

INF 1-week 0.971 0.968 0.960 0.967 0.942 0.939 0.959 0.952 0.908

2-week 0.952 0.957 0.946 0.952 0.929 0.934 0.947 0.947 0.904

1-month 0.959 0.970 0.936 0.971 0.936 0.941 0.962 0.960 0.918

LPL 1-week 0.975 0.973 0.965 0.975 0.954 0.952 0.968 0.965 0.923

2-week 0.968 0.971 0.954 0.970 0.942 0.947 0.962 0.955 0.918

1-month 0.954 0.973 0.942 0.968 0.923 0.926 0.954 0.957 0.900

Portfolio 1-week 0.921 0.933 0.883 0.905 0.900 0.900 0.904 0.899 0.868

2-week 0.896 0.917 0.837 0.896 0.879 0.894 0.883 0.870 0.863

1-month 0.842 0.896 0.789 0.888 0.846 0.855 0.879 0.855 0.844

CSE G.I. 1-week 0.979 0.983 0.934 0.963 0.941 0.931 0.959 0.952 0.905

2-week 0.949 0.975 0.904 0.970 0.907 0.915 0.944 0.936 0.888

1-month 0.881 0.950 0.821 0.931 0.875 0.881 0.920 0.905 0.862

Table 49: General Index-Weighted:Adjusted 99% VaR test results (Rfree=0.0).
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Method nVaR1 pVaR1 nVaR2 pVaR2 nVaR3 pVaR3 nVaR4 pVaR4 RiskMetrics

BOC 1-week 0.9248 0.9719 0.8778 0.9601 0.9282 0.9467 0.9265 0.94 0.9131

2-week 0.8946 0.9585 0.8508 0.9433 0.9131 0.9047 0.8979 0.9063 0.8761

1-month 0.8508 0.9332 0.8071 0.9147 0.8508 0.8508 0.8542 0.8828 0.8273

CLR 1-week 1.0224 1.024 1.0173 1.0207 1.0055 1.0089 1.0156 1.014 0.9803

2-week 1.0089 1.0173 1.0106 1.0173 1.0005 0.9988 1.0022 1.0022 0.9652

1-month 1.0055 1.0089 1.0022 1.0072 0.9887 0.9887 1.0055 1.0072 0.9585

EURO 1-week 0.7432 0.7886 0.713 0.7718 0.7331 0.75 0.7264 0.7432 0.7231

2-week 0.6945 0.7584 0.6726 0.7432 0.7331 0.7365 0.7113 0.713 0.7062

1-month 0.6659 0.713 0.639 0.6995 0.6877 0.6928 0.6743 0.6861 0.6709

INF 1-week 0.9971 1.0005 0.9753 1.0022 0.9534 0.9618 0.9854 0.9854 0.9316

2-week 0.9786 1.0039 0.977 1.0005 0.9551 0.9534 0.9719 0.9803 0.9198

1-month 0.9719 0.9955 0.9433 0.982 0.9282 0.9282 0.9534 0.9736 0.9063

LPL 1-week 0.9854 0.9921 0.982 0.9938 0.9803 0.982 0.9854 0.982 0.9534

2-week 0.9871 0.9988 0.9803 0.9904 0.9686 0.9652 0.9837 0.9887 0.9349

1-month 0.9702 0.9904 0.9618 0.9871 0.9534 0.9551 0.9669 0.977 0.9282

PORTFOLIO 1-week 0.8525 0.9063 0.8239 0.8878 0.8609 0.8677 0.866 0.8677 0.8408

2-week 0.8054 0.866 0.7802 0.8609 0.834 0.8273 0.8155 0.8239 0.7987

1-month 0.7567 0.8256 0.7264 0.8038 0.7701 0.7752 0.7567 0.797 0.7685

CSE G.I. 1-week 0.8912 0.9484 0.8626 0.9366 0.8996 0.908 0.9063 0.908 0.8744

2-week 0.8542 0.9316 0.829 0.908 0.8626 0.8593 0.8525 0.8677 0.8273

1-month 0.7701 0.8492 0.7449 0.8307 0.8054 0.8088 0.7937 0.8172 0.797

Table 50: General Index-Ordinary: Adjusted 95% VaR test results (Rfree=0.04).
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Method nVaR1 pVaR1 nVaR2 pVaR2 nVaR3 pVaR3 nVaR4 pVaR4 RiskMetrics

BOC 1-week 0.903 0.9517 0.8508 0.9332 0.9181 0.9316 0.9114 0.9198 0.9013

2-week 0.8828 0.945 0.8374 0.9299 0.9265 0.9198 0.8727 0.8862 0.8878

1-month 0.8139 0.8912 0.7802 0.8811 0.866 0.8693 0.8357 0.8542 0.8458

CLR 1-week 1.0022 1.0039 0.9971 1.0055 0.9955 0.9955 1.0005 1.0005 0.9652

2-week 0.9921 0.9988 0.9854 0.9988 0.9904 0.9904 0.9803 0.9871 0.9568

1-month 0.9786 0.9955 0.9803 0.9887 0.9652 0.9669 0.9719 0.9786 0.9332

EURO 1-week 0.7668 0.8172 0.7483 0.7903 0.7853 0.797 0.7701 0.7735 0.7634

2-week 0.7247 0.7735 0.7012 0.7651 0.7718 0.7668 0.7298 0.7348 0.7416

1-month 0.6978 0.76 0.6861 0.7365 0.7298 0.7382 0.7079 0.7298 0.7214

INF 1-week 0.9686 0.9753 0.9551 0.9803 0.9417 0.9467 0.9517 0.9568 0.9131

2-week 0.9652 0.9786 0.9534 0.9702 0.9417 0.9417 0.9467 0.9517 0.908

1-month 0.94 0.9652 0.9316 0.9686 0.9181 0.9248 0.9299 0.9484 0.9047

LPL 1-week 0.9887 0.9971 0.9854 0.9938 0.9686 0.9702 0.977 0.9786 0.9417

2-week 0.977 0.9871 0.977 0.9837 0.9702 0.9686 0.9736 0.9753 0.9366

1-month 0.9618 0.9702 0.9635 0.9686 0.9517 0.9517 0.9601 0.9618 0.9215

PORTFOLIO 1-week 0.8492 0.8979 0.8122 0.8794 0.8593 0.8778 0.8458 0.8525 0.8559

2-week 0.7954 0.866 0.787 0.8559 0.8391 0.834 0.8071 0.8206 0.8021

1-month 0.76 0.8139 0.7315 0.8054 0.7954 0.7954 0.7735 0.797 0.7802

CSE G.I. 1-week 0.8979 0.9551 0.8492 0.9467 0.908 0.9164 0.8996 0.9063 0.8862

2-week 0.8542 0.9299 0.8273 0.9181 0.8811 0.8727 0.8441 0.8677 0.8458

1-month 0.7718 0.8408 0.7466 0.8374 0.8139 0.8172 0.7802 0.8273 0.8054

Table 51: General Index-Weighted: Adjusted 95% VaR test results (Rfree=0.04).
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Method nVaR1 pVaR1 nVaR2 pVaR2 nVaR3 pVaR3 nVaR4 pVaR4 RiskMetrics

BOC 1-week 0.9762 0.9714 0.9359 0.9714 0.9504 0.9472 0.9585 0.9601 0.9181

2-week 0.9746 0.9891 0.923 0.973 0.931 0.9343 0.9585 0.9536 0.9036

1-month 0.9585 0.9956 0.8939 0.9891 0.9004 0.9036 0.9649 0.9552 0.881

CLR 1-week 0.9924 0.994 0.9875 0.9924 0.9827 0.9827 0.9907 0.9875 0.9504

2-week 0.9859 0.9875 0.9827 0.9843 0.9681 0.9746 0.9843 0.9827 0.9439

1-month 0.9714 0.9762 0.9698 0.9762 0.9649 0.9665 0.973 0.973 0.9391

EURO 1-week 0.8423 0.8407 0.7987 0.8165 0.81 0.8052 0.8197 0.8068 0.7794

2-week 0.789 0.8197 0.7519 0.8036 0.7648 0.781 0.789 0.7681 0.7503

1-month 0.731 0.7826 0.6922 0.7713 0.7342 0.739 0.76 0.739 0.7197

INF 1-week 0.9859 0.9859 0.973 0.9827 0.9617 0.9617 0.9746 0.9665 0.931

2-week 0.973 0.9778 0.9698 0.9811 0.9456 0.952 0.9714 0.9681 0.9214

1-month 0.9665 0.9827 0.9569 0.9794 0.9456 0.9456 0.9714 0.9714 0.9214

LPL 1-week 0.9794 0.9827 0.9665 0.9811 0.9536 0.952 0.9714 0.9633 0.9246

2-week 0.9762 0.9811 0.9681 0.9794 0.9536 0.9569 0.973 0.9665 0.9246

1-month 0.9617 0.9827 0.9504 0.9762 0.9375 0.9375 0.9681 0.9665 0.9133

PORTFOLIO 1-week 0.9294 0.9294 0.8859 0.9278 0.8988 0.8923 0.9165 0.902 0.8665

2-week 0.9004 0.9246 0.8423 0.9101 0.8633 0.8713 0.8859 0.8697 0.8423

1-month 0.8552 0.9068 0.7987 0.9004 0.8342 0.8439 0.8665 0.8649 0.8245

CSE G.I. 1-week 0.9746 0.9827 0.9359 0.9714 0.931 0.9262 0.9569 0.9488 0.8972

2-week 0.9504 0.9746 0.9101 0.9569 0.8859 0.8988 0.9391 0.931 0.8729

1-month 0.8842 0.9456 0.8116 0.9326 0.8584 0.8633 0.9149 0.902 0.8487

Table 52: General Index-Ordinary: Adjusted 99% VaR test results (Rfree=0.04).
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Method nVaR1 pVaR1 nVaR2 pVaR2 nVaR3 pVaR3 nVaR4 pVaR4 RiskMetrics

BOC 1-week 0.9681 0.9698 0.931 0.9569 0.9552 0.9552 0.9536 0.9456 0.923

2-week 0.9617 0.9762 0.9181 0.9569 0.9294 0.9391 0.9536 0.9456 0.9084

1-month 0.9214 0.9843 0.8713 0.973 0.9004 0.9036 0.9407 0.9359 0.8826

CLR 1-week 0.9746 0.9746 0.9714 0.9714 0.9665 0.9665 0.9665 0.9681 0.9343

2-week 0.9665 0.9681 0.9633 0.9681 0.9552 0.9552 0.9649 0.9617 0.923

1-month 0.9633 0.9665 0.9552 0.9649 0.9407 0.9423 0.9633 0.9633 0.9149

EURO 1-week 0.8455 0.8487 0.8019 0.8326 0.8439 0.8439 0.8262 0.8132 0.8116

2-week 0.8132 0.8391 0.7697 0.8262 0.8068 0.8149 0.81 0.7955 0.7874

1-month 0.7729 0.8181 0.7358 0.8116 0.7681 0.7826 0.7907 0.7777 0.7729

INF 1-week 0.9714 0.9714 0.9601 0.9665 0.9423 0.9391 0.9552 0.9552 0.9084

2-week 0.9504 0.9536 0.9423 0.9504 0.9294 0.9343 0.9456 0.9472 0.9036

1-month 0.9633 0.9714 0.9391 0.9698 0.9359 0.9407 0.9601 0.9569 0.9181

LPL 1-week 0.973 0.9714 0.9665 0.9681 0.9536 0.952 0.9649 0.9633 0.923

2-week 0.9649 0.973 0.9569 0.9649 0.9423 0.9472 0.9617 0.9585 0.9181

1-month 0.9472 0.9698 0.9407 0.9665 0.923 0.9262 0.9504 0.9488 0.9004

PORTFOLIO 1-week 0.9181 0.9294 0.8746 0.9246 0.9004 0.9004 0.9036 0.8955 0.8681

2-week 0.8955 0.9149 0.8439 0.8988 0.8794 0.8939 0.881 0.8681 0.8633

1-month 0.8391 0.8988 0.8003 0.8907 0.8455 0.8552 0.8649 0.852 0.8439

CSE G.I. 1-week 0.9746 0.9827 0.9278 0.9649 0.9407 0.931 0.9633 0.9456 0.9052

2-week 0.9536 0.9714 0.9052 0.9536 0.9068 0.9149 0.9488 0.9326 0.8875

1-month 0.8891 0.9472 0.8213 0.9294 0.8746 0.881 0.9165 0.9084 0.8617

Table 53: General Index-Weighted:Adjusted 99% VaR test results (Rfree=0.04).
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The results using as a market index the sector indexes with Rfree=0.0 are shown initially

and then the corresponding results with Rfree=0.04.

Method nVaR1 pVaR1 nVaR2 pVaR2 nVaR3 pVaR3 nVaR4 pVaR4 RiskMetrics

BOC 1-week 0.8749 0.9748 0.8851 0.9596 0.8005 0.8039 0.9409 0.9528 0.9240

2-week 0.8512 0.9562 0.8580 0.9342 0.7666 0.7734 0.9020 0.9156 0.9105

1-month 0.8039 0.9426 0.8174 0.9172 0.7142 0.7209 0.7700 0.7836 0.8699

INF 1-week 1.0289 1.0408 1.0256 1.0391 0.9223 0.9223 1.0340 1.0340 0.9359

2-week 1.0188 1.0408 1.0239 1.0391 0.9003 0.9088 1.0154 1.0222 0.9240

1-month 1.0205 1.0425 1.0137 1.0408 0.9071 0.9139 0.9680 0.9731 0.9206

LPL 1-week 0.9917 1.0052 0.9968 1.0002 0.9579 0.9596 1.0036 1.0036 0.9562

2-week 1.0019 1.0086 1.0019 1.0086 0.9528 0.9528 1.0036 1.0069 0.9376

1-month 0.9849 1.0069 0.9883 1.0069 0.9426 0.9426 0.9663 0.9731 0.9172

PORTFOLIO 1-week 0.8123 0.8969 0.8123 0.8919 0.7802 0.7886 0.8665 0.8716 0.8445

2-week 0.7666 0.8614 0.7666 0.8563 0.7649 0.7717 0.8106 0.8208 0.8039

1-month 0.7277 0.8208 0.7328 0.8123 0.7057 0.7226 0.6905 0.6989 0.7734

Table 54: Sectors-Ordinary: Adjusted 95% VaR test results (Rfree=0.0).

Method nVaR1 pVaR1 nVaR2 pVaR2 nVaR3 pVaR3 nVaR4 pVaR4 RiskMetrics

BOC 1-week 0.8744 0.9702 0.8677 0.9551 0.7954 0.7987 0.9349 0.9383 0.9181

2-week 0.8357 0.9467 0.8475 0.9282 0.7617 0.7685 0.8963 0.9147 0.9047

1-month 0.797 0.9349 0.8139 0.9181 0.7096 0.7163 0.7701 0.7819 0.8643

INF 1-week 1.0224 1.0341 1.0207 1.0341 0.9164 0.9164 1.024 1.0274 0.9299

2-week 1.0123 1.0341 1.0156 1.0291 0.8946 0.903 1.014 1.014 0.9181

1-month 1.014 1.0358 1.0089 1.0358 0.9013 0.908 0.9568 0.9719 0.9147

LPL 1-week 0.9887 1.0022 0.9955 0.9971 0.9517 0.9534 0.9955 0.9988 0.9501

2-week 0.9921 1.0005 0.9921 1.0005 0.9467 0.9467 1.0005 1.0022 0.9316

1-month 0.9753 0.9988 0.9803 0.9921 0.9366 0.9366 0.9618 0.9669 0.9114

PORTFOLIO 1-week 0.8139 0.8862 0.8004 0.8727 0.7752 0.7836 0.8576 0.8609 0.8391

2-week 0.7651 0.8593 0.7701 0.8424 0.76 0.7668 0.8122 0.8172 0.7987

1-month 0.718 0.8189 0.7247 0.8071 0.7012 0.718 0.6894 0.6961 0.7685

Table 55: Sectors-Ordinary: Adjusted 95% VaR test results (Rfree=0.04).
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Method nVaR1 pVaR1 nVaR2 pVaR2 nVaR3 pVaR3 nVaR4 pVaR4 RiskMetrics

BOC 1-week 0.8749 0.9562 0.8749 0.9511 0.7869 0.7869 0.9274 0.9291 0.9037

2-week 0.8326 0.9240 0.8377 0.9223 0.7446 0.7514 0.8936 0.8919 0.8902

1-month 0.7836 0.9274 0.8005 0.9240 0.6955 0.7006 0.7700 0.7717 0.8462

INF 1-week 0.9883 1.0002 0.9799 0.9968 0.8986 0.9003 0.9799 0.9866 0.9088

2-week 0.9883 1.0069 0.9866 1.0052 0.8868 0.8885 0.9883 0.9900 0.8986

1-month 0.9799 1.0002 0.9765 1.0036 0.8699 0.8732 0.9139 0.9291 0.8648

LPL 1-week 1.0052 1.0120 1.0002 1.0137 0.9629 0.9629 1.0103 1.0120 0.9562

2-week 1.0086 1.0103 1.0086 1.0103 0.9646 0.9663 1.0103 1.0120 0.9494

1-month 1.0002 1.0103 1.0036 1.0103 0.9596 0.9612 0.9748 0.9832 0.9392

PORTFOLIO 1-week 0.8259 0.8851 0.8191 0.8699 0.7954 0.7988 0.8665 0.8732 0.8546

2-week 0.7751 0.8648 0.7920 0.8665 0.7700 0.7768 0.8191 0.8276 0.8123

1-month 0.7345 0.8259 0.7497 0.8191 0.7294 0.7429 0.6955 0.7142 0.7886

Table 56: Sectors-Weighted: Adjusted 95% VaR test results (Rfree=0.0).

Method nVaR1 pVaR1 nVaR2 pVaR2 nVaR3 pVaR3 nVaR4 pVaR4 RiskMetrics

BOC 1-week 0.871 0.9585 0.871 0.9433 0.7819 0.7819 0.9198 0.9265 0.8979

2-week 0.8239 0.9248 0.8307 0.9181 0.7399 0.7466 0.8828 0.8979 0.8845

1-month 0.787 0.9164 0.8054 0.9147 0.6911 0.6961 0.755 0.7701 0.8408

INF 1-week 0.9837 0.9988 0.977 0.9988 0.8929 0.8946 0.9753 0.9786 0.903

2-week 0.9803 1.0039 0.9803 1.0055 0.8811 0.8828 0.9786 0.9837 0.8929

1-month 0.9686 0.9955 0.9702 0.9988 0.8643 0.8677 0.9097 0.9232 0.8593

LPL 1-week 0.9938 1.0055 0.9921 1.0022 0.9568 0.9568 1.0039 1.0055 0.9501

2-week 1.0005 1.0039 1.0055 1.0055 0.9585 0.9601 1.0039 1.0072 0.9433

1-month 0.9921 1.0039 0.9938 1.0055 0.9534 0.9551 0.9702 0.977 0.9332

PORTFOLIO 1-week 0.8206 0.8929 0.8054 0.8811 0.7903 0.7937 0.8593 0.8677 0.8492

2-week 0.7718 0.8593 0.7752 0.8525 0.7651 0.7718 0.8172 0.8307 0.8071

1-month 0.7382 0.8223 0.7432 0.8038 0.7247 0.7382 0.6978 0.7113 0.7836

Table 57: Sectors-Weighted: Adjusted 95% VaR test results (Rfree=0.04).
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Method nVaR1 pVaR1 nVaR2 pVaR2 nVaR3 pVaR3 nVaR4 pVaR4 RiskMetrics

BOC 1-week 0.9679 0.9776 0.9711 0.9728 0.7892 0.7941 0.9792 0.9711 0.9386

2-week 0.9581 0.9890 0.9500 0.9760 0.7681 0.7763 0.9679 0.9630 0.9224

1-month 0.9224 1.0004 0.9224 0.9874 0.7275 0.7340 0.8574 0.8396 0.8997

INF 1-week 1.0004 1.0069 1.0020 1.0069 0.9159 0.9159 1.0020 1.0020 0.9370

2-week 1.0052 1.0085 1.0020 1.0085 0.8932 0.8964 1.0036 0.9987 0.9257

1-month 1.0020 1.0101 1.0004 1.0101 0.9029 0.9078 0.9825 0.9809 0.9289

LPL 1-week 0.9825 0.9857 0.9857 0.9792 0.9240 0.9240 0.9890 0.9874 0.9240

2-week 0.9857 0.9890 0.9890 0.9857 0.9240 0.9289 0.9939 0.9890 0.9208

1-month 0.9760 0.9906 0.9841 0.9809 0.9175 0.9175 0.9614 0.9646 0.9013

PORTFOLIO 1-week 0.9029 0.9289 0.9289 0.9240 0.8087 0.8055 0.9289 0.9159 0.8704

2-week 0.8672 0.9192 0.8867 0.9143 0.7876 0.8022 0.8916 0.8753 0.8526

1-month 0.8217 0.9127 0.8201 0.8980 0.7535 0.7746 0.7584 0.7438 0.8282

Table 58: Sectors-Ordinary: Adjusted 99% VaR test results (Rfree=0.0).

Method nVaR1 pVaR1 nVaR2 pVaR2 nVaR3 pVaR3 nVaR4 pVaR4 RiskMetrics

BOC 1-week 0.9649 0.9714 0.9649 0.9617 0.7842 0.789 0.9698 0.9698 0.9326

2-week 0.9456 0.9778 0.9633 0.9714 0.7632 0.7713 0.9665 0.9585 0.9165

1-month 0.9165 0.994 0.9214 0.9843 0.7229 0.7293 0.852 0.8326 0.8939

INF 1-week 0.9972 1.0004 0.9988 0.9956 0.9101 0.9101 0.9956 0.9956 0.931

2-week 0.9988 1.0036 0.9972 0.9988 0.8875 0.8907 0.9972 0.9972 0.9197

1-month 0.9956 1.0036 1.0004 1.0036 0.8972 0.902 0.9762 0.9714 0.923

LPL 1-week 0.9843 0.9811 0.9811 0.9762 0.9181 0.9181 0.9811 0.9811 0.9181

2-week 0.9778 0.9827 0.9811 0.9811 0.9181 0.923 0.9875 0.9843 0.9149

1-month 0.973 0.9843 0.9778 0.9811 0.9117 0.9117 0.9601 0.9569 0.8955

PORTFOLIO 1-week 0.8972 0.9262 0.9149 0.923 0.8036 0.8003 0.923 0.9133 0.8649

2-week 0.8617 0.9165 0.8891 0.9004 0.7826 0.7971 0.8859 0.8794 0.8471

1-month 0.8213 0.9052 0.8342 0.8923 0.7487 0.7697 0.7681 0.7455 0.8229

Table 59: Sectors-Ordinary: Adjusted 99% VaR test results (Rfree=0.04).
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Method nVaR1 pVaR1 nVaR2 pVaR2 nVaR3 pVaR3 nVaR4 pVaR4 RiskMetrics

BOC 1-week 0.9549 0.9679 0.9614 0.9614 0.7811 0.7860 0.9630 0.9533 0.9305

2-week 0.9208 0.9663 0.9305 0.9565 0.7454 0.7584 0.9451 0.9354 0.9127

1-month 0.9127 0.9809 0.9370 0.9744 0.7097 0.7145 0.8428 0.8266 0.8867

INF 1-week 0.9695 0.9760 0.9760 0.9776 0.8899 0.8883 0.9646 0.9630 0.9045

2-week 0.9760 0.9906 0.9809 0.9890 0.8672 0.8786 0.9776 0.9744 0.8980

1-month 0.9614 0.9922 0.9744 0.9874 0.8688 0.8769 0.9484 0.9468 0.8916

LPL 1-week 0.9792 0.9776 0.9825 0.9744 0.9354 0.9338 0.9874 0.9857 0.9289

2-week 0.9809 0.9906 0.9809 0.9841 0.9370 0.9370 0.9874 0.9890 0.9289

1-month 0.9809 0.9890 0.9825 0.9874 0.9240 0.9305 0.9711 0.9695 0.9208

PORTFOLIO 1-week 0.9029 0.9322 0.9192 0.9159 0.8104 0.8087 0.9127 0.9094 0.8753

2-week 0.8639 0.9224 0.8948 0.9143 0.7909 0.8104 0.8899 0.8802 0.8591

1-month 0.8315 0.9208 0.8591 0.9094 0.7730 0.7909 0.7730 0.7519 0.8380

Table 60: Sectors-Weighted: Adjusted 99% VaR test results (Rfree=0.0).

Method nVaR1 pVaR1 nVaR2 pVaR2 nVaR3 pVaR3 nVaR4 pVaR4 RiskMetrics

BOC 1-week 0.9504 0.9552 0.9472 0.9439 0.7761 0.781 0.9617 0.9504 0.9246

2-week 0.9165 0.9617 0.9423 0.9488 0.7406 0.7535 0.9359 0.9278 0.9068

1-month 0.9084 0.9762 0.9214 0.9649 0.7051 0.71 0.8374 0.8262 0.881

INF 1-week 0.9633 0.9714 0.9665 0.9714 0.8842 0.8826 0.9601 0.9569 0.8988

2-week 0.9746 0.9827 0.9746 0.9827 0.8617 0.8729 0.973 0.9698 0.8923

1-month 0.9552 0.9843 0.9649 0.9843 0.8633 0.8713 0.9456 0.9456 0.8859

LPL 1-week 0.973 0.973 0.973 0.9762 0.9294 0.9278 0.9762 0.9778 0.923

2-week 0.9778 0.9843 0.9859 0.9843 0.931 0.931 0.9843 0.9827 0.923

1-month 0.9746 0.9827 0.9746 0.9811 0.9181 0.9246 0.9665 0.9633 0.9149

PORTFOLIO 1-week 0.8907 0.9278 0.9084 0.9084 0.8052 0.8036 0.9101 0.902 0.8697

2-week 0.8649 0.9214 0.8859 0.9068 0.7858 0.8052 0.8859 0.8697 0.8536

1-month 0.8213 0.9149 0.8504 0.902 0.7681 0.7858 0.7713 0.7648 0.8326

Table 61: Sectors-Weighted: Adjusted 99% VaR test results (Rfree=0.04).
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Portfolio: 95% VaR Test Results
 Beta estimated through Weighted against General Index
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Figure 28: CSE general index-Weighted: Portfolio Adjusted 95% VaR test results.

Portfolio: 95% VaR Test Results 
 Beta estimated through Weighted against Sector Indeces
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Figure 29: Sector indexes-Weighted : Portfolio Adjusted 95% VaR test results.
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Portfolio: 99% VaR Test Results
  Beta estimated through Weighted against General Index
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Figure 30: CSE general index-Weighted : Portfolio Adjusted 99% VaR test results.
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Figure 31: Sector indexes-Weighted : Portfolio Adjusted 99% VaR test results.
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Portfolio 95% VaR Test Results 
Beta estimated through Ordinary against General Index
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Figure 32: CSE general index-Ordinary : Portfolio Adjusted 95% VaR test results.
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Figure 33: Sector indexes-Ordinary : Portfolio Adjusted 95% VaR test results.
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Portfolio 99% VaR Test Results
Beta estimated through Ordinary against General Index
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Figure 34: CSE general index-Ordinary : Portfolio Adjusted 99% VaR test results.
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Figure 35: Sector indexes-Ordinary : Portfolio Adjusted 99% VaR test results.
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E Residual analysis

Here we present the analysis of regression residuals using as a market index the CSE

general index. This indicates that the normality assumption is accepted for the securities

BOC for period 3, Table (62) and Figure (39), and EURO for period 3, Table (63), Figure

(41).

The Figure (36) shows that the we have homoscedasticity and therefore the Ordinary

model is suitable for use, while Figure (37) shows heteroscedasticity and therefore the a

transformation should be considered (i.e. use Weighted method).

Weighted Ordinary

Period History 1 2 3 History 1 2 3

λ 0.91 0.94 0.82 0.74 0.91 0.94 0.82 0.74

Sample 1343 798 281 264 1343 798 281 264

mean 0.11 0.01% -6.6% -10.87% -1.09% 0.95% % -4.84% -2.93%

St.Deviation 99.96 99.93% 99.61% 99.21% 99.95% 99.9% 99.7% 99.76%

Skewness 4.29 -7.3 -1.55 -0.13 -2.96 -7.53 -180 0.24

Kurtosis 110.12 127.77 9.94 6.23 39.4 135.92 13.38 5.20

Min -975.24% -1772.7% -651.99% -500.8% -1359.2% -1799.31% -731.13% -398.8%

Max 18.97% 386.60% 237.85% 393.47% 509.73% 405.7% 308.91% 481.03%

A-D ∞ 32.51 4.19 1.55 43.11 37.17 4.85 0.62

kolmogorov 0.1502 0.12 0.08 0.06 0.12 0.13 0.10 0.048

X-square 748.18 257.77 172.1 55.11 447.6 293.1 134.8 19.1

Table 62: Descriptive statistics of the regression residual of BOC against the CSE General

Index.
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Weighted Ordinary

Period History 1 2 3 History 1 2 3

λ 0.95 1 0.77 0.80 0.95 1 0.77 0.80

Sample 938 420 281 237 938 420 281 237

mean -0.28% 5.41% -3.41% -6.25% -0.23% 5.46% 0.82% -5.69%

St.Deviation 99.94% 99.73% 99.76% 99.59% 99.94% 99.73% 99.81% 99.62%

Skewness 1.26 0.76 -0.51 0.81 1.27 0.76 1.39 0.78

Kurtosis 19.49 8.35 12.02 6.54 1.27 8.37 18.88 6.43

Min -562.9% -534.49% -597.2% -266.54% -584.83% -535.3% -443% -269.07%

Max 1046.8% 478.19% 547.27% 488.99% 1049.8% 478.34% 799.1% 486.2%

A-D ∞ 10.41 6.44 2.128 ∞ 10.48 7.19 2.05

kolmogorov 0.105 0.12 0.107 0.069 10.82 0.123 0.114 0.07

X-square 310.72 207.4 111.1 38.97 310.1 209.37 99.62 34.55

Table 63: Descriptive statistics of the regression residual of EURO against the CSE General

Index.

Weighted Ordinary

Security CLR INF LPL CLR INF LPL

λ 0.79 0.89 0.89 0.79 0.89 0.89

Sample 161 268 120 161 268 120

mean 9.42% 10.22% 1.37% 8.73% 9.33% 0.78%

St.Deviation 99.23% 99.28% 99.56% 99.3% 99.37% 99.57%

Skewness -0.25 0.46 0.14 -0.51 0.39 0.17

Kurtosis 5.64 59.60 3.92 6.66 6.16 3.93

Min -380.13% -311.05% -341.3% -385.86% -342.36% -338.77%

Max 321.79% 492.8% 275% 343.52% 496.63% 275.44%

A-D 1.7 2.76 0.602 2.266 3.02 0.65

kolmogorov 0.082 0.07 0.076 0.082 0.07 0.083

X-square 118.7 84.93 61.1 88.7 87.01 65.76

Table 64: Descriptive statistics of the regression residual of the securities against the CSE

General Index.
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BOC Period 3: Residuals vs Time
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Figure 36: Residual vs Time

CLR GI : Residual vs Time
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Figure 37: Residual vs Time
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Figure 38: Histogram and QQ-plot of the Weighted residuals of BOC against the CSE General

Index for period 3.
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Figure 39: Histogram and QQ-plot of the Ordinary residuals of BOC against the CSE General

Index for period 3.
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Figure 40: Histogram and QQ-plot of the Weighted residuals of EURO against the CSE

General Index for period 3.
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Figure 41: Histogram and QQ-plot of the Ordinary residuals of EURO against the CSE

General Index for period 3.
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Figure 42: Histogram and QQ-plot of the Weighted residuals of INF against the CSE General

Index for the whole history.
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Figure 43: Histogram and QQ-plot of the Ordinary residuals of INF against the CSE General

Index for the whole history.
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Figure 44: Histogram and QQ-plot of the Weighted residuals of CLR against the CSE General

Index for the whole history.

−3 −2 −1 0 1 2 3 4
0

10

20

30

40

50
Histogram

−4 −3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3
QQ Normal Plot

Normal Quantiles

Figure 45: Histogram and QQ-plot of the Ordinary residuals of CLR against the CSE General

Index for the whole history.
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Figure 46: Histogram and QQ-plot of the Weighted residuals of LPL against the CSE General

Index for the whole history.
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Figure 47: Histogram and QQ-plot of the Ordinary residuals of LPL against the CSE General

Index for the whole history.
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