
ARTICLE IN PRESS
European Journal of Operational Research xxx (2006) xxx–xxx

www.elsevier.com/locate/ejor
A dynamic stochastic programming model
for international portfolio management q

Nikolas Topaloglou, Hercules Vladimirou *, Stavros A. Zenios

HERMES European Center of Excellence on Computational Finance and Economics, School of Economics and Management,

University of Cyprus, P.O. Box 20537, CY-1678 Nicosia, Cyprus

Received 1 February 2005; accepted 1 July 2005
Abstract

We develop a multi-stage stochastic programming model for international portfolio management in a dynamic setting.
We model uncertainty in asset prices and exchange rates in terms of scenario trees that reflect the empirical distributions
implied by market data. The model takes a holistic view of the problem. It considers portfolio rebalancing decisions over
multiple periods in accordance with the contingencies of the scenario tree. The solution jointly determines capital alloca-
tions to international markets, the selection of assets within each market, and appropriate currency hedging levels. We
investigate the performance of alternative hedging strategies through extensive numerical tests with real market data.
We show that appropriate selection of currency forward contracts materially reduces risk in international portfolios.
We further find that multi-stage models consistently outperform single-stage models. Our results demonstrate that the sto-
chastic programming framework provides a flexible and effective decision support tool for international portfolio
management.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Active management of international portfolios is
of particular interest to multinational firms, finan-
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cial intermediaries, institutional investors (e.g.,
banks, insurance firms, mutual funds, pension
funds) and high net-worth individuals. Investments
in foreign securities are becoming accessible to a
wide range of investors. This is a consequence of
liberalization in capital flows, and advancements
in information technology that provide instanta-
neously information from remote financial markets
and facilitate the execution of transactions. Inter-
national investments provide certain benefits: (a)
the prospect for higher profit in the event of favor-
able performance of foreign markets, (b) wider
scope for diversification, (c) reduced exposure to
.
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systematic risk due to generally low correlations of
international securities.

The potential benefits of international diversifica-
tion were recognized early; see, for example, Grubel
[11], Levy and Sarnat [18], and Solnik [22]. Due to
comparably low correlations of international securi-
ties, improvements in reward-to-risk performance
can be achieved by holding internationally diversi-
fied portfolios. Despite a general increase in the cor-
relation of international markets in recent years as a
result of financial globalization and market integra-
tion, international investments continue to provide
a wider scope for portfolio diversification than is
available in a domestic market. Optimal manage-
ment of international portfolios, especially in a
dynamic setting, continues to be a problem of great
interest and practical significance.

Eun and Resnick [8] pointed out that interna-
tional diversification decisions should take into
account the exposure to currency risk. Namely,
the risk stemming from fluctuations of foreign
exchange rates, as uncertain future exchange rates
directly affect the translation of returns from foreign
investments into the investor’s base-currency
returns. Given the volatility of exchange rates in
some periods, currency risk can have a major
impact on international portfolios.

Means to effectively hedge currency risk are
actively studied. In a key early contribution, Black
[3] suggested a universal hedge ratio for all inves-
tors, implying that all foreign investments should
be hedged to the same proportion. Subsequent stud-
ies examined more flexible currency hedging strate-
gies. A number of empirical studies evaluated the
merits of various approaches for hedging exchange
rate risk, usually on the basis of forward currency
rates. We do not review this extensive literature
here. Despite a general agreement that currency
hedging can mitigate portfolio risk, there is not a
consensus as to a universally optimal currency hedg-
ing rule. The literature presents somewhat different
views as to the optimal course of action for hedging
currency risk in international portfolios, depending
on the focus of each study with regard to various
factors, such as: the investment opportunity set,
the risk aversion preference and time horizon of
the decision maker, the reference currency of the
investor, the investment strategy (passive vs active),
the distribution and stationarity of asset returns
and exchange rates in the timeframe of the study
(i.e. the historical data used in calibrating the distri-
butions), the realized market conditions (trends,
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volatilities, correlations between markets) at the
time of simulations, the specific hedging strategies
that were compared.

The overall conclusion is that the relative merits
of alternative hedging strategies remain mostly an
empirical issue, they depend on the factors men-
tioned above and are usually problem-dependent.
These observations point to the need for flexible
decision approaches that can be adjusted in each
case to the problem at hand. This study develops
a general and flexible model to support interna-
tional portfolio management decisions.

In practice, and more often than not in the liter-
ature as well, the international portfolio manage-
ment problem is addressed in an overlay manner.
First, the capital allocation to various markets is
decided at the strategic level. The management of
the capital allocations is then assigned to different
trading desks with expertise in the respective mar-
kets. Each trading desk has independent jurisdiction
to tactically select specific securities within its
assigned market, and operationally manage its
own portfolio. Performance is typically compared
against some benchmark. Currency hedging is often
viewed as a subordinate decision, and is taken last
to cover specific exposures of foreign asset positions
that were decided previously. A global view of the
problem is not often taken, and possible cross-hedg-
ing effects among portfolio positions are frequently
ignored. Changes in the portfolio structure are not
always coordinated with corresponding adjustments
to the currency hedging positions. Important and
interrelated decisions are considered separately
and sequentially.

Jorion [16] criticized this overlay approach and
showed that it is suboptimal to a holistic view that
considers all the interrelated decisions in a unified
manner. Here, we develop a comprehensive model-
ling framework that jointly addresses the capital
allocation, the portfolio selection, and the currency
hedging decisions.

Filatov and Rappoport [9] were the first to sug-
gest a selective hedging approach in which the hedge
ratios may vary across currencies. They showed that
selective hedging can yield different optimal hedge
ratios for each currency. Owing to this flexibility,
the selective hedging approach dominates other
strategies that tie in specific ways the hedge ratios
across currencies (e.g., unitary and partial hedging,
which selective hedging encompasses as special
cases). In their empirical tests, they also found that
the optimal selective hedging policy can be different
namic stochastic programming model ..., Eur. J. Operat.
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for investors with different reference currencies.
Beltratti et al. [2] incorporated selective hedging
decisions within a single-stage portfolio optimiza-
tion model and empirically confirmed the superior-
ity of selective hedging to unitary hedging. Their
model used a mean-absolute-deviation objective,
and bootstrapping of historical data for scenario
generation. Topaloglou et al. [25] extended this
model for international asset allocation by using a
more appropriate scenario generation procedure,
and by adopting a risk measure that is suitable for
the asymmetric distributions exhibited by interna-
tional asset returns and exchange rates.

Glen and Jorion [10] considered dynamic hedging
strategies, and observed that the optimal hedging
policy may be temporally unstable. They concluded
that benefits can be obtained by following a state
contingent policy that varies the level and the struc-
ture of hedging depending on the investment oppor-
tunity set and on evolving information regarding the
distributions of asset returns and exchange rates.

Building on the findings of these studies, we
develop a general and flexible modelling framework
for the active management of international portfo-
lios in a dynamic setting. The primary features of
our model are: a multi-period decision framework
that considers information and decision dynamics,
the ability to capture arbitrary stochastic evolutions
of the random factors by means of a discrete repre-
sentation (scenario tree), state-contingent decisions
in conformity with the projected outcomes of the
random variables, dynamic adjustments of portfolio
positions and currency hedging levels in response to
changing information on prevailing economic con-
ditions (distributions of the random variables as
reflected in the scenario tree), operationalization of
currency hedging decisions by means of explicit for-
ward exchange contracts for each currency that fully
encompass a selective hedging approach, a holistic
view of the problem that accounts for decision inter-
actions and considers the total risk exposure of the
international portfolio, a risk measure that is suit-
able for skewed and leptokurtic distributions as
have been observed for international indices and
exchange rates, consideration of transaction costs.
Alternative objectives to reflect the decision maker’s
risk bearing preferences, as well as other operational
issues (e.g., managerial and regulatory conditions)
can be easily incorporated with appropriate adjust-
ments to the model.

The paper is organized as follows. In the next sec-
tion we briefly describe the problem and introduce
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the modelling choices for our solution approach.
In Section 3 we describe the representation of uncer-
tainty in the multi-stage portfolio optimization
model by means of a scenario tree. We present the
key statistics of the random variables based on his-
torical data and discuss the scenario generation pro-
cedure. In Section 4 we formulate the stochastic
programming model for international portfolio
management and examine its features. In Section 5
we describe the computational tests and we present
the empirical results. In Section 6 we discuss the
findings of this study and directions for further
research.

2. Problem description and modeling approach

We consider the problem of a decision maker
who is concerned with the active management of a
set of financial assets (stock and bond indices in this
study) denominated in multiple currencies, so as to
generate profit while at the same time controlling
the downside risk exposure. The problem has a
dynamic structure that involves portfolio rebalanc-
ing decisions at periodic intervals in response to
new information on market conditions (i.e., chang-
ing perceptions regarding the distributions of ran-
dom asset prices and exchange rates). Rebalancing
decisions are manifested in a sequence of successive
revisions of holdings through sales and purchases of
assets and currency exchange transactions in the
spot market. Currency forward contracts can be
employed to hedge the currency risk of foreign
investments; we consider forward contracts with a
term of a single period at each decision stage.

The decision maker starts with an initial portfo-
lio and has full knowledge of the current asset prices
and exchange rates. Thus, individual asset holdings,
as well as the entire portfolio, can be accurately val-
ued. The decision maker must assess the potential
movements of the asset prices and the exchange
rates that affect the future value and risk exposure
of his portfolio. His perceptions for such market
movements are expressed in terms of a joint proba-
bility distribution of the random variables; he must
project the contingent evolution of the random vari-
ables over the entire planning horizon. The portfo-
lio rebalancing and currency hedging decisions
should conform to these projections.

Clearly, the initial portfolio restructuring deci-
sion has a direct effect in subsequent periods. Port-
folio rebalancing decisions at later periods depend
on the portfolio composition at that time, the pre-
amic stochastic programming model ..., Eur. J. Operat.
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vailing market conditions at the time, and the per-
ception for subsequent potential movements of the
random variables. Conversely, the flexibility for
subsequent portfolio rebalancing influences earlier
decisions. Thus, a multi-stage model is needed to
capture the information and decision dynamics
and their interaction.

Practical issues, such as transaction costs, mana-
gerial and regulatory requirements should be incor-
porated in the decision model. Transaction costs do
play a role in portfolio management and their effect
must be considered. Their omission can lead to high
portfolio turnover with a consequent reduction in
gains and a potential increase in risk exposure.
The impact of transaction costs and the potential
benefits of diversification are more properly cap-
tured in a multi-period decision model.

The paradigm of multi-stage stochastic programs
with recourse is particularly suitable for this prob-
lem. Uncertainty in input parameters of stochastic
programs is represented by discrete scenarios that
depict the joint co-variation of the random vari-
ables. In multi-stage problems the progressive evo-
lution of the random variables is expressed in
terms of a scenario tree. Scenarios can be generated
with various approaches, and they are not restricted
to any particular distributional assumption. Asym-
metric and fat-tailed distributions that are often
observed in practice can be captured by discrete
approximations. Indeed, this flexibility in the repre-
sentation of uncertainty in input parameters is a
major advantage of stochastic programs.

Stochastic programs can accommodate different
objective functions to capture the decision maker’s
risk bearing preferences (e.g., utility functions, pen-
alties on shortfalls and other risk measures, etc.)
Moreover, they can incorporate managerial and
regulatory requirements, especially when such
requirements are expressed in terms of linear con-
straints. Because of their flexibility, stochastic pro-
grams have attracted the attention of researchers
and practitioners alike and are being increasingly
applied to diverse practical problems. Various
applications of stochastic programs are docu-
mented in the volume edited by Wallace and Zie-
mba [30].

Financial modeling is a particularly fertile appli-
cation domain for stochastic programming. Numer-
ous important contributions have been made during
the last 20 years. Financial applications of stochas-
tic programming models have twice been among the
finalists for the Edelman Prize for best achievement
Please cite this article in press as: N. Topaloglou et al., A dy
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in Management Science in recent years (see, [5,19]).
There have been numerous notable contributions of
stochastic programming applications to such diverse
problems as asset and liability management, portfo-
lio management, insurance, pension funds, credit
risk management, etc. Some recent collections con-
tain several representative contributions (e.g.,
[31,30,28,32]).

We adopt the multistage stochastic programming
framework for the international portfolio manage-
ment problem because of its flexible features that
we discussed above. Multi-stage models help deci-
sion makers gain useful insights and adopt more
effective decisions. They shape decisions based on
longer-term potential benefits and avoid myopic
reactions to short-term market movements that
may prove risky. They determine appropriate
dynamic contingency (recourse) decisions under
changing economic conditions that are represented
by scenario trees. Our model encompasses all the
important aspects of the problem and jointly deter-
mines the allocation of capital to international mar-
kets, the selection of specific asset holdings within
each market, and currency hedging decisions with
forward contracts. Thus, all interrelated decisions,
that are traditionally considered separately, are cast
in a unified and flexible framework.

As we indicate in Section 3.2, the returns of sev-
eral international indices and the movements of
exchange rates exhibit asymmetric distributions
with fat tails. Consideration of these features is
important in our study that aims to devise methods
for controlling downside risk. We capture skewness
and excess kurtosis in the distributions of the ran-
dom variables by applying a moment-matching sce-
nario generation procedure. This procedure
generates scenarios so that key statistics (specifi-
cally, the first four marginal moments and the corre-
lations) of the random variables match specified
target values. We estimated the target values for
these statistics on the basis of historical data. We
verified through exhaustive tests that the scenario
sets also satisfied the required no-arbitrage
conditions.

We employed the conditional value-at-risk
(CVaR) metric in the objective function in order to
minimize the expected shortfall beyond the value-
at-risk (VaR) of portfolio losses at the end of the
horizon. The choice of the objective function was
made in light of the observed asymmetries and
excess kurtosis of key random variables. CVaR is a
coherent risk measure, and is suitable for asymmet-
namic stochastic programming model ..., Eur. J. Operat.
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ric distributions. This objective function enabled the
effective control of downside risk exposure. Alterna-
tive means can be employed to control downside
risk; for example, piecewise-linear convex penalties
on shortfall levels [5].

This study extends the work in Topaloglou et al.
[25] in several important directions. First, it devel-
ops a multi-stage stochastic programming model
that allows the solution of dynamic interna-
tional portfolio management models. Second, it
operationalizes the currency hedging decisions by
incorporating explicit variables that transparently
determine the appropriate level of forward contracts
for each currency. Third, it adopts a flexible and
effective scenario generation procedure that pro-
duces scenario sets that closely approximate the
empirical joint distributions of asset returns and
exchange rates.
3. Representation of uncertainty

The representation of uncertainty in input
parameters of the portfolio optimization model is
a critical step in the modelling process. The key
random inputs in the international portfolio man-
agement problem are the asset prices (or, equiva-
lently, their returns) and the currency exchange
rates at the trading dates within the planning hori-
zon. Plausible evolutions of the random parameters
during the planning horizon are specified in terms of
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Fig. 1. General form of a scenario tree.
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discrete joint outcomes that are mapped to the
nodes of a scenario tree, such as the one shown in
Fig. 1.

A major advantage of stochastic programs is that
they are not restricted to any particular distribu-
tional assumption for the random variables. They
can accommodate arbitrary discrete distributions
that are expressed by means of a scenario tree.
Alternative scenario generation procedures for sto-
chastic programs are reviewed in Dupačová et al.
[6]. The key decisions in a scenario generation
method are the choice of a statistical model and
the calibration of its parameters, usually on the
basis of market data or subjective expert opinions.
The scenario set must conform to financial princi-
ples; specifically, it must be free from arbitrage
opportunities.

3.1. The scenario tree

The planning horizon is divided to periods
t = 0,1, . . . ,T corresponding to the times at which
portfolio rebalancing decisions can be made. The
tree has a depth equal to the number of periods
(decision stages); we use monthly trading periods.
The root node (n = 0) corresponds to the initial
state at the present time (t = 0). All input data asso-
ciated with the root node are known with certainty.
The tree branches out from the root to depict pro-
gressive outcomes in the values of the random
variables at subsequent periods. The branches ema-
nating from the root reflect the possible outcomes
during the first period (t = 1). Each postulated out-
come is associated with an immediate successor
node. Similarly, the branches emanating from any
subsequent node represent the discrete, condi-
tional distribution of the random variables during
the next time period. Each node reflects a possible
state at the corresponding time period, and captures
a joint realization of the random variables at that
time.

Each scenario distinguishes a sequence of joint
realizations of the random variables during the
planning horizon. Thus, it has a one-to-one corre-
spondence with a terminal node (leaf) of the tree.
The constituent realizations of the random variables
at each period are identified by the nodes on the
unique path from the root to the leaf node associ-
ated with the scenario (such as the highlighted path
in Fig. 1). The scenario tree need not be symmetric,
and it is rarely binomial as shown in Fig. 1 simply
for illustration purposes.
amic stochastic programming model ..., Eur. J. Operat.
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We use the following notation:
N the set of nodes of the scenario tree;
n 2 N a typical node of the scenario tree (n = 0

denotes the root node at t = 0);
Nt � N the set of distinct nodes of the tree at time

period t = 0,1, . . . ,T;
NT � N the set of leaf (terminal) nodes at the last

period T, that uniquely identify the scenar-
ios;

p(n) 2 N the unique predecessor node of node
n 2 Nn{0};

Sn � N the set of immediate successor nodes of
node n 2 NnNT. This set of nodes repre-
sents the discrete distribution of the ran-
dom variables at the respective time
period, conditional on the state of node n;

pn
t the conditional probability for the outcome

associated with the transition from the pre-
decessor node p(n) to node n 2 N;

pn the probability of the state associated with
node n 2 N.

The probability, pn, of a certain node (state)
n 2 N is determined by multiplying the conditional
probabilities of the outcomes on the path from the
root to the specific node; i.e., by compounding the
conditional probabilities of the constituent out-
comes that lead to the specific state. The probabili-
ties of all distinct nodes at any decision stage sum to
one (i.e.,

P
n2N t

pn ¼ 1; t ¼ 0; 1; . . . ; T ). Also, the
probability of a node is equal to the sum of the
probabilities of its immediate successor nodes (i.e.,
pn ¼

P
m2Sn

pm; 8n 2 N nNT ).
The scenario tree represents the evolution of the

multi-variate random variables over the planning
horizon. We define distinct (recourse) variables,
and associated constraints, to model the portfolio
rebalancing decisions at each intermediate node of
the scenario tree (i.e., "n 2 NnNT). At the leaf
nodes, NT, we only compute the corresponding ter-
minal value of the portfolio under the respective sce-
narios. The size of the resulting multi-stage
stochastic program grows substantially with the
number of tree nodes. In multi-stage problems
attention must be paid to limit the branching factor
from each node—and, consequently, the total num-
ber of scenarios—in order to keep the size of the
optimization program within computationally trac-
table limits. Scenario reduction techniques have
been proposed for this purpose (see, [7,12]).

Stochastic programs must conform to the logical
requirement for non-anticipative decisions. That is,
Please cite this article in press as: N. Topaloglou et al., A dy
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scenarios that share common information history
(outcomes) up to a particular time period—i.e., have
common subpath of the scenario tree up to that per-
iod—must yield identical decisions up to that per-
iod. The non-anticipativity condition is explicitly
enforced in our model as decision variables are
defined for each node—instead of each path.

3.2. Scenario generation

We consider portfolios of stock and bond indices
denominated in different currencies. Statistical anal-
ysis of market data reveals that the random vari-
ables (index returns and currency exchange rates)
are correlated. Moreover, their historical values do
not conform to normal distributions; they exhibit
asymmetries and heavy tails. These observations
are consistent with the findings of other studies that
considered the returns of international financial
assets; see, for example, Prakash et al. [20] and ref-
erences therein. These features should be reflected in
the postulated scenario sets that should capture the
statistical characteristics of the random variables’
empirical distribution. Effectively capturing the
observed skewness and excess kurtosis in the distri-
bution of the random variables, as well as their cor-
relations, becomes important. This becomes all the
more necessary as we are concerned with controlling
the downside risk in the tail of the portfolio’s return
distribution.

In the empirical tests we consider investments in
four markets: United States (US), Great Britain
(UK), Germany (GR) and Japan (JP), comprised
of the following instruments in each market: a stock
index, denoted as Stk, and bond indices with three
different maturity bands: short—(1–3 years), inter-
mediate—(3–7 years) and long-term (7–10 years),
denoted Bnd1, Bnd3 and Bnd7, respectively. Thus,
a total of 16 assets are considered in each portfolio.
The problem is viewed from the perspective of a US
investor. Repositioning of investments between
markets entails spot currency exchange transac-
tions. Moreover, forward currency exchange con-
tracts—with a term equal to a decision period, i.e.,
one month—are incorporated in the portfolio opti-
mization model to (partly) hedge the currency risk
of foreign investments. Hence, data for the spot
and forward exchange rates of the foreign currencies
to USD are also needed.

Market values of the stock indices were obtained
from the Morgan Stanley Capital International, Inc.
database (www.mscidata.com). The values for the
namic stochastic programming model ..., Eur. J. Operat.
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Table 1
Statistical characteristics of historical monthly data for domestic
returns of assets and proportional changes of spot currency
exchange rates over the period 01/1990–12/2001

Asset
class

Mean
(%)

Std.
Dev.
(%)

Skewness Kurtosis Jarque–
Bera
statistic

Statistical characteristics of monthly domestic returns of assets

US.Stk 1.211 4.097 �0.413 3.649 6.11
UK.Stk 1.025 4.254 �0.018 3.371 0.61
GRStk 1.167 5.807 �0.561 4.301 13.92
JP.Stk �0.170 6.881 0.017 3.836 2.45
US.Bnd1 0.567 0.504 �0.006 2.765 0.74
US.Bnd3 0.654 1.118 �0.112 2.626 1.03
US.Bnd7 0.710 1.670 �0.090 2.912 0.30
UK.Bnd1 0.680 0.714 0.995 7.461 150.82
UK.Bnd3 0.741 1.349 0.510 4.631 29.45
UK.Bnd7 0.793 1.880 0.134 3.390 1.53
GR.Bnd1 0.493 0.480 0.288 4.451 31.24
GR.Bnd3 0.552 0.930 �0.255 3.162 4.58
GR.Bnd7 0.583 1.372 �0.663 3.887 22.87
JP.Bnd1 0.283 0.481 0.663 4.708 12.98
JP.Bnd3 0.416 1.121 �0.099 4.401 26.37
JP.Bnd7 0.503 1.678 �0.519 5.434 47.62

Exchange
rate

Statistical characteristics of monthly proportional spot exchange

rate changes

US to UK �0.116 2.894 �0.755 5.672 102.39
US to GR �0.124 3.091 �0.215 3.399 5.69
US to JP 0.030 3.615 0.942 6.213 105.27
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bond indices and the currency exchange rates were
collected from DataStream. All time series have
a monthly time-step and cover the period from
April 1988 through December 2001. From the data
of index prices we computed their corresponding
monthly returns (in domestic terms). Similarly, from
the observed series of spot exchange rates we com-
puted their corresponding monthly appreciation
rates (proportional changes).

The statistics in Table 1 show that both the
domestic returns of the indices and the proportional
changes of exchange rates exhibit skewed distribu-
tions; they also exhibit considerable variance in
comparison to their mean (especially the stock indi-
ces). Jarque–Bera tests on these data indicate that
the normality hypothesis cannot be accepted for
most of them.1 The normal distribution cannot
properly capture the observed joint behavior of
the financial time series. Extreme values are encoun-
tered more often than predicted by the normal
distribution.

The correlations of the random variables over the
period 01/1990–12/2001 are shown in Table 2.
Observe that correlations of asset returns are much
lower across markets than within markets. Hence,
international diversification can reduce the total risk
of a portfolio.

Given the statistical characteristics of the random
variables, we apply the moment-matching proce-
dure of Høyland and Wallace [15] and Høyland
et al. [14] to generate sets of scenarios so that key
statistics of the random variables match specified
target values. Specifically, we match the following
statistics: the first four marginal moments (mean,
variance, skewness, and kurtosis), as well as the cor-
relations of the monthly asset returns and currency
exchange appreciation rates. We estimate the target
values to be matched on the basis of historical data.

The user specifies a-priori the desired number of
scenarios, thus controlling the size of the result-
ing portfolio optimization program. The model pre-
sented in the next section is dynamic and involves an
arbitrary number of decision stages. We generate
the scenarios incrementally, one stage at a time.
1 The Jarque–Bera statistic has a X2 distribution with two
degrees of freedom. Its critical values at the 5% and 1%
confidence levels are 5.99 and 9.21, respectively. The normality
hypothesis is rejected when the Jarque–Bera statistic has a higher
value than the corresponding critical value at the respective
confidence level.

Please cite this article in press as: N. Topaloglou et al., A dyn
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From observed market data we estimate the target
statistics of the random variables for a monthly time
period—equal to a decision period of the model. We
apply the moment-matching procedure to generate
the joint realizations (a discrete multivariate distri-
bution) of the random variables for the first period
(t = 1)—i.e., for the branches emanating from the
root node. Similarly, for each subsequent node we
generate a number of joint outcomes of the random
variables for the next stage that match the same sta-
tistical properties. We generate equiprobable out-
comes from each node; this is not an absolute
requirement as the moment-matching method can
also generate outcomes with differing probabilities,
at the expense of higher computational effort.

This scenario generation procedure does not
account for possible intertemporal dependencies of
the random variables (e.g., mean reversion, volatil-
ity clustering, etc.). This should be the subject of
further research. Consideration of such effects is
not critical for problems with fairly short planning
horizons (<1 year) and monthly decision periods,
amic stochastic programming model ..., Eur. J. Operat.
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as we consider in this study. It becomes more impor-
tant for problems with short decision stages (e.g.,
daily) or very long planning horizons.

At the root node we know with certainty the
market asset prices, the spot exchange rates, and
the forward rates for the next period (i.e., one
month). Using the projected asset returns and cur-
rency appreciation rates for the first period, we com-
pute the joint asset prices and spot currency
exchange rates for each node at the first stage
(t = 1). Similarly, knowing the asset prices and spot
exchange rates at a subsequent node of the scenario
tree, as well as the projected asset returns and cur-
rency appreciation rates for the branches emanating
from that node, we determine the asset prices and
spot exchange rates at the end of the stage for each
immediate successor node. For each node we also
specify forward exchange rates for one-month for-
ward currency transactions. These forward rates
are set equal to the expected value of the respective
spot exchange rates at the end of the period—i.e., by
taking the expectation of the spot exchange rates
over the immediate successor nodes. This is done
so as to ensure that the no-arbitrage conditions
are met for forward currency exchanges.

The multi-stage stochastic program can be
extended to include longer-term forward currency
exchanges (i.e., spanning multiple decision stages).
Additional variables would be needed to represent
these forward currency contracts, coupling the cash
balance conditions in non-successive decision peri-
ods. The longer-term forward exchange rates would
have to be carefully modelled consistently with the
projected spot exchange rates and the shorter-term
forward exchange rates. We leave such an extension
for a subsequent study.

In a critique of the moment-matching method,
Klaasen [17] argued that it is possible to match the
moments of random asset returns with a coarse dis-
crete distribution that violates the no-arbitrage prin-
ciple; he provided a small example with a triangular
distribution for a univariate random variable. We
tested exhaustively all the scenario sets used in our
numerical experiments and empirically verified that
the no-arbitrage conditions were always satisfied.

The stochastic programming model in the next
section is not restricted to the moment-matching sce-
nario generation procedure. A user can employ an
alternative approach—such as the method of Hoch-
reiter and Pflug [13]—that he finds preferable to gen-
erate the scenarios of asset prices and exchange rates.
Of course, the scenarios must effectively reflect the
namic stochastic programming model ..., Eur. J. Operat.
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intended distributions of the random variables and
must satisfy fundamental financial principles (e.g.,
must be arbitrage free). The moment-matching pro-
cedure that we employed in the numerical validation
tests meets these requirements.

4. International portfolio management model

The model determines a sequence of investment
decisions at discrete points in time (monthly inter-
vals). The portfolio manager starts with an initial
portfolio and with a set of postulated outcomes
regarding future states of the economy. This infor-
mation is incorporated into a portfolio restructuring
decision. At the beginning of the next period the
manager has at hand a seasoned portfolio. The com-
position of the portfolio depends on the transactions
at the previous decision point; its value depends on
the outcome of asset returns and exchange rates in
the interim period. For every projected realization
of the random variables we end up at a different state
at the end of the period—associated with a descen-
dant node. Another portfolio restructuring decision
is made at that node based on the portfolio at hand,
and taking into account the subsequent possible out-
comes of the random variables.

The problem is viewed from the perspective of a
US investor who may hold assets denominated in
multiple currencies. Without loss of generality, no
direct exchanges between foreign currencies are exe-
cuted—either in the spot or in the forward market—
in order to simplify the formulation of the model
and to reduce its data needs, as well as the number
of decision variables. All currency exchanges are
executed with respect to the base currency. To repo-
sition his investments from one market (currency) to
another, the investor must first convert to base cur-
rency the proceeds of foreign asset sales in the mar-
ket in which he reduces his presence and then
purchase the foreign currency in which he wishes
to increase his investments. The spot exchange rates
of foreign currencies to USD applicable at the deci-
sion state (node) are used for the currency exchange
transactions. At the end of the holding period we
compute the state-dependent value of asset holdings
using their projected prices at the respective tree
node. The USD-equivalent value is determined by
applying the estimate of the appropriate spot
exchange rate to USD at the same node.

The portfolio is exposed to market risk in the
domestic and foreign markets, as well as to currency
risk for the foreign investments. To (partly) hedge
Please cite this article in press as: N. Topaloglou et al., A dyn
Res. (2006), doi:10.1016/j.ejor.2005.07.035
currency risk at each decision node, the investor
may enter into forward currency exchange con-
tracts. We allow forward currency exchanges with
a term (maturity) of one period, i.e., one month.
The key decision is the amount of the contract.
The actual exchange takes place at the end of the
period using the forward rate that is specified at
the time the decision is made (i.e., at the beginning
of the period). The forward currency exchange con-
tracts constitute hedging decisions to mitigate the
respective exposure of foreign investments to cur-
rency risk. The optimal selection of currency for-
ward contracts is integrally incorporated in the
portfolio management model.

The notion of ‘‘full hedging’’ that is often
referred to in the literature is not attainable exactly
with forward exchanges. This is because the value of
foreign asset holdings at the end of any period is not
known with certainty at the beginning of the period,
i.e., at the time that a forward contract is decided.
This value depends on the realized asset returns dur-
ing the interim period. Yet, the amount of the for-
ward contract must be decided before the realized
asset returns are observed. Hence, forward currency
exchanges cannot hedge fully the currency risk
exposure of foreign investments.

The stochastic programming model takes as
input the representation of uncertainty as captured
by the scenario tree. The model minimizes the con-
ditional value-at-risk (CVaR) of portfolio losses at
the end of the planning horizon. That is, it mini-
mizes the expected value in the tail (beyond a spe-
cific percentile, a) of the portfolio losses at the end
of the planning horizon. CVaR is the conditional
expectation of excess shortfall beyond the value-
at-risk of losses (VaR) at the respective percentile
level. Unlike VaR, CVaR is a coherent risk measure
in the sense of Artzner et al. [1], and is receiving
increasing attention in financial applications. The
incorporation of the CVaR function in the stochastic
programming model is done along the lines of
Rockafellar and Uryasev [21] (see, also, Topaloglou
et al. [25]).

We define the following additional notation:
Sets:

C0 set of markets (synonymously, countries,
currencies);

‘ 2 C0 index of investor’s base (reference) currency
(in our case USD);

C set of foreign markets; C = C0n{‘};
Ic set of available investments (asset classes)

in market c 2 C0.
amic stochastic programming model ..., Eur. J. Operat.
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User-specified parameters:

a critical percentile for VaR and CVaR;
l target (minimum) expected portfolio return

over the planning horizon.

Deterministic input data:
h0

c initially available cash in currency c 2 C0

(deficit if negative);
bic initial position (in number of units of face

value) in asset i 2 Ic of market c 2 C0;
P 0

ic current market price of asset i 2 Ic,c 2 C0

(in units of domestic currency c);
e0

c current spot exchange rate of currency
c 2 C0;

u0
c currently quoted one-month forward ex-

change rate for foreign currency c 2 C;
cic proportional transaction cost for sales or

purchases of asset i 2 Ic,c 2 C0;
V0 total value of initial portfolio (i.e., initial

wealth, in units of reference currency):
V 0 ¼

P
c2C0
ðh0

c þ
P

i2Ic
bicP 0

icÞe0
c .

Scenario-dependent data:
pn probability of node n 2 N—we generate

symmetric trees with equiprobable scenar-
ios, thus pn ¼ 1

jN t j ; 8n 2 N t; t ¼ 0; 1; . . . ; T ;
hn

c exogenous cash inflow (liability if �ve) of
currency c 2 C0 at node n 2 N;

P n
ic price of asset i 2 Ic,c 2 C0 at node n 2 N (in

units of domestic currency c);
en

c spot exchange rate for foreign currency
c 2 C at node n 2 N;

un
c one-month forward exchange rate for for-

eign currency c 2 C at node n 2 N;
Un

c upper bound on a forward contract in cur-
rency c 2 C0 at node n 2 N (in units of the
base currency).

Decision variables:
Portfolio rebalancing decisions are made at

nodes of the scenario tree except for the leaves; thus
separate variables are defined for each node
n 2 NnNT to reflect the decisions made at the respec-
tive node:
xn

ic units of asset i 2 Ic,c 2 C0 purchased;
vn

ic units of asset i 2 Ic,c 2 C0 sold;
wn

ic units of asset i 2 Ic,c 2 C0 held in the port-
folio after revision;

gn
c expenditure of base currency, ‘, for pur-

chase of currency c 2 C in the spot market;
qn

c revenue in base currency, ‘, from sale of
foreign currency c 2 C in the spot market;

10 N. Topaloglou et al. / European Journal o
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f n
c amount of base currency, ‘, collected from

sale of currency c 2 C in the forward mar-
ket (i.e., amount of forward contract, in
units of the base currency). A negative va-
lue indicates a purchase of the foreign cur-
rency in the forward market. These
decisions are made at node n 2 NnNT, but
the actual transaction is executed at the
end of the respective period, i.e., at the suc-
cessor nodes Sn.

Variables at the leaf nodes n 2 NT:
Vn final value of the portfolio held at the end

of the planning horizon (in units of the base
currency, ‘);

Rn return of the portfolio over the planning
horizon;

Ln portfolio loss over the planning horizon.

Auxiliary variables:
yn portfolio shortfall in excess of VaR at leaf

node n 2 NT;
z variable in definition of CVaR—equals to

VaR at the optimal solution.

All exchange rates are expressed as the equivalent
amount of the base currency, ‘, for one unit of the
foreign currency. Obviously, en

‘ ¼ un
‘ ¼ 1; 8n 2 N .

Also gn
‘ ¼ qn

‘ ¼ f n
‘ ¼ 0; 8n 2 N ; these variables are

omitted in the actual implementation.
We formulate the multi-stage stochastic pro-

gramming model for the dynamic international
portfolio management problem as follows:

min f ¼ zþ 1

1� a

X
n2NT

pnyn; ð1aÞ

s:t: w0
ic ¼ bic þ x0

ic � v0
ic; 8c 2 C0; 8i 2 I c; ð1bÞ

wn
ic ¼ wpðnÞ

ic þ xn
ic � vn

ic; 8c 2 C0; 8i 2 I c;

8n 2 N n fNT [ 0g; ð1cÞ

h0
‘ þ

X
i2I ‘

v0
i‘P

0
i‘ð1� cicÞ þ

X
c2C

q0
c

¼
X
i2I ‘

x0
i‘P

0
i‘ð1þ cicÞ þ

X
c2C

g0
c ; ð1dÞ

h0
c þ

X
i2Ic

v0
icP

0
icð1� cicÞ þ

g0
c

e0
c

¼
X
i2Ic

x0
icP

0
icð1þ cicÞ þ

q0
c

e0
c

; 8c 2 C ; ð1eÞ
namic stochastic programming model ..., Eur. J. Operat.
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hn
‘ þ

X
i2I ‘

vn
i‘P

n
i‘ð1� cicÞ þ

X
c2C

ðqn
c þ f pðnÞ

c Þ

¼
X
i2I ‘

xn
i‘P

n
i‘ð1þ cicÞ þ

X
c2C

gn
c ;

8n 2 N n fNT [ 0g; ð1fÞ

hn
c þ

X
i2Ic

vn
icP

n
icð1� cicÞ þ

gn
c

en
c

¼
X
i2Ic

xn
icP

n
icð1þ cicÞ þ

qn
c

en
c

þ f pðnÞ
c

upðnÞ
c

;

8c 2 C ; 8n 2 N n fNT [ 0g; ð1gÞ

Rn ¼
V n

V 0

� 1; 8n 2 NT ; ð1hÞ

Ln ¼ �Rn; 8n 2 NT ; ð1iÞ

yn P Ln � z; 8n 2 NT ; ð1jÞ

yn P 0; 8n 2 NT ; ð1kÞ

xn
ic P 0; wn

ic P 0; 8c 2 C0 ; 8i 2 I c;

8n 2 N nNT ; ð1lÞ

0 6 v0
ic 6 bic; 8c 2 C0 ; 8i 2 I c; ð1mÞ

0 6 vn
ic 6 wpðnÞ

ic ; 8c 2 C0; 8i 2 I c;

8n 2 N n fNT [ 0g; ð1nÞ

gn
c P 0; qn

c P 0; 8c 2 C ; 8n 2 N nNT ;

ð1oÞ

f n
c 6 Un

c ; 8c 2 C ; 8n 2 N nNT ; ð1pÞX
n2NT

pnRn P l; ð1qÞ

where

V n ¼ hn
‘ þ
X
i2I‘

wpðnÞ
i‘ P n

i‘

þ
X
c2C

f pðnÞ
c þ en

c hn
c þ
X
i2Ic

wpðnÞ
ic P n

ic �
f pðnÞ

c

upðnÞ
c

 !( )
; 8n 2NT :

ð2Þ
The model is a multi-stage stochastic linear program
with recourse. Decisions at any node explicitly de-
pend on the corresponding postulated outcome for
the random variables and directly impact on deci-
sions at descendant nodes. The model minimizes
the conditional value-at-risk of the portfolio losses
at the end of the horizon, while it parametrically sets
Please cite this article in press as: N. Topaloglou et al., A dyn
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a minimum target, l, for the portfolio’s expected re-
turn over the planning horizon. Expectations are
computed over the set of terminal states (leaf nodes).
The objective value, f, measures the CVaR of
portfolio losses at the end of the planning horizon,
while the corresponding VaR of portfolio losses
(at percentile a) is captured by the variable z; see [21].

Eqs. (1b) and (1c) are the balance conditions for
each asset, in each market, at the first and subse-
quent decision stages, respectively. Eqs. (1d) and
(1e) impose the cash balance conditions at the first
stage; the former for the base currency ‘ and the lat-
ter for the foreign currencies c 2 C. In each case,
availability of funds stems from initially available
reserves, revenues from asset sales, and amounts
received through incoming currency exchanges in
the spot market. Correspondingly, the uses of funds
cover the expenditure for the purchase of assets and
outgoing currency exchanges in the spot market. No
holdings in cash are allowed after portfolio restruc-
turing. Hence, we do not need to explicitly model
the interest rates in each market. Similarly, Eqs.
(1f) and (1g) impose the state-dependent cash bal-
ance conditions in every currency at subsequent
decision stages. These equations additionally
account for forward currency exchange contracts
that are decided at the predecessor node.

Eqs. (1h) and (1i) define the portfolio return and
the portfolio loss at leaf node n 2 NT, respectively.
The constraints (1j) and (1k) define the portfolio’s
excess shortfall, yn = max[0,Ln � z], over the plan-
ning horizon for each scenario. The constraints in
(1l), (1m) and (1n) disallow short positions in the
assets and ensure that sales cannot exceed the quan-
tities in the portfolio at hand. Constraints (1o)
ensure that currency transactions in the spot market
are nonnegative. Constraint (1q) sets a minimum
target l on the portfolio’s expected return over the
planning horizon. By parametrically changing this
target level we generate solutions that trade off
expected return against total risk exposure (as cap-
tured in the objective function).

The final value of the portfolio at leaf node
n 2 NT is computed in (2). This equation takes into
consideration exogenously available cash and reve-
nues from the liquidation of asset holdings in each
market. The contribution of foreign investments to
the total value of the portfolio accounts for the
settlement of any outstanding forward contracts.
The residual amount is valued in terms of the
base currency by using the projected spot exchange
rates.
amic stochastic programming model ..., Eur. J. Operat.
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The constraints in (1p) impose limits on the cur-
rency forward contracts at every decision state. We
consider alternative hedging policies by appropri-
ately setting these bounds:

ðiÞ Un
c ¼

X
i2Ic

en
cðwn

icP
n
icÞ; 8c 2 C ; 8n 2N nNT ; ð3Þ

ðiiÞ Un
c ¼

X
m2Sn

pmem
c ð
X
i2Ic

wn
icP

m
icÞ; 8c 2 C ; 8n 2N nNT ;

ð4Þ
ðiiiÞ Un

c ¼1; 8c 2 C ; 8n 2N nNT ; ð5Þ
ðivÞ Un

c ¼ 0; 8c 2 C ; 8n 2N nNT : ð6Þ

The first case permits a forward contract to cover up
to the current value of total asset holdings in the
respective currency, with the foreign holdings val-
ued at the time that the forward contract is decided.
This alternative ignores the fact that the value of the
foreign asset holdings will change due to the uncer-
tain returns and exchange rates during the period.
In the second case, the level of a forward contract
is bounded by the expected value (in units of the
base currency) of the respective foreign asset hold-
ings in the portfolio at the end of the decision peri-
od—thus, the expectation is taken over the
outcomes at the successor nodes—so as to reflect
the expected exposure of the foreign asset positions.
In the third case, no restriction is explicitly imposed
on the level of forward contracts, which are then
treated simply as alternative investment opportuni-
ties. In this case, forward positions are allowed
regardless of the value of asset holdings in the
respective currency. The last case sets the currency
forward contracts identically equal to zero (in fact,
we eliminate from the model the variables f n

c in this
case). This case corresponds to totally unhedged
international investments.

The proportional transaction costs cic for the
assets create proportional bid-ask spreads
2cicP

n
ic; 8c 2 C0; 8i 2 I c; 8n 2 N nNT . The effective

purchase price for an asset in a cash balance equa-
tion for node n 2 NnNT is P n

icð1þ cicÞ, while the
effective sale price for the same asset is P n

icð1� cicÞ.
As defined in the formulation, the model permits a
different transaction cost for each asset. In the com-
putational tests we used a constant proportional
transaction cost cic = 0.05% for all assets (i.e.,
"c 2 C0, "i 2 Ic). For currency exchanges (both
spot and forward) a transaction cost 0.01% was
incorporated in the respective exchange rates.

Starting with an initial portfolio, the multi-stage
portfolio optimization model determines optimal
Please cite this article in press as: N. Topaloglou et al., A dy
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decisions for the contingencies of the scenario tree.
The decisions at each node of the tree specify not
only the allocation of funds across markets but also
the specific asset holdings in each market. More-
over, currency forward contracts are determined
so as to (partly) hedge the currency risk exposure
of the foreign investments during the holding period
(i.e., until the next portfolio rebalancing decision).
Thus, a number of decisions that are usually treated
separately are cast here in a unified framework. Sim-
ple variants of the model can reflect alternative pol-
icies for hedging currency risks with the use of
currency forward contracts. The model provides a
testbed so as to analyze empirically its effectiveness
in managing international portfolios of stock and
bond indices, and to compare the performance of
risk hedging alternatives.
5. Empirical results

We implemented the multistage stochastic pro-
gramming model in the General Algebraic Model-
ing System (GAMS) [4]. We solved single-stage
and two-stage instances of the model. The aims of
the numerical experiments are: (i) to investigate
the efficacy of the stochastic programming model
as a practical decision support tool for managing
international investment portfolios, (ii) to test alter-
native risk hedging strategies so as to assess their
relative performance in controlling currency risk,
and (iii) to contrast the performance of the two-
stage stochastic programming model with that of
its single-stage counterpart.

We examine the performance of various decision
strategies in static as well as in dynamic tests to
identify the most promising tactics. In static tests
we compare the risk-return profiles (efficient fron-
tiers) generated with appropriate variants of the
model at a certain point in time. The optimization
models were run with alternative bounds on cur-
rency forward contracts as specified in Eqs. (3)–
(6). The static tests considered portfolio selection
problems. The initial portfolio involved only a cash
endowment in the base currency—which the models
apportioned optimally to the available assets. The
models were repeatedly run for various levels of
minimum expected return, l. The solutions trace
the corresponding efficient frontiers of expected
portfolio return vs. the CVaR risk metric of portfo-
lio losses (at the a = 95% percentile) over the plan-
ning horizon. The efficient frontiers are determined
namic stochastic programming model ..., Eur. J. Operat.
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in-sample; that is, with respect to the postulated
scenarios.

The static tests yield useful insights regarding the
potential of the various decision strategies with
respect to the postulated distributions (scenarios)
at a certain point in time. However, this potential
does not necessarily materialize in practice. We
additionally ran dynamic tests to assess the perfor-
mance of the models in backtesting simulations.
The models were run, on a rolling horizon basis,
at each successive month in the period 04/1998–
11/2001 (i.e., for a total of 43 months). Starting with
an initial cash endowment in the base currency in
April 1998, each model was executed to decide the
initial portfolio composition. The statistics of the
random variables, computed from their observed
market values during the previous 10 years, were
matched in generating the scenarios. Each model
was solved and the first-stage decisions were
recorded. The clock then advanced one month.
The realized return of the optimal portfolio was
determined on the basis of the revealed market
prices of the assets and the exchange rates. Any out-
standing currency forward contracts were settled
and the resulting cash positions in each currency
were updated accordingly. A new set of scenarios
was then generated by matching the statistics of
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Fig. 2. Risk-return efficient frontiers with two-stage mode
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the random variables to their estimates from their
market values during the previous ten years. With
the new scenarios as input, and using the portfolio
composition and cash positions resulting from the
previous decisions as a starting point, the model
was solved again. The process was repeated for each
successive month and the ex post realized returns
were recorded. Thus, the backtesting simulations
demonstrate the actual returns that would have
been realized had the decisions of the models been
implemented during the simulation period 04/
1998–11/2001.

5.1. Assessment of hedging strategies

Fig. 2 presents the efficient frontiers for alterna-
tive allowable levels of currency forward positions
— controlled by the respective bounds in (3)–(6).
This figure shows the tradeoffs between the expected
return and the CVaR measure of losses during a
two-month planning horizon for optimal portfolios
of the two-stage stochastic program. The two-stage
model used 15,000 scenarios composed of 150 joint
realizations of the random variables in the first
stage, each followed by a set of 100 further out-
comes in the second stage. These tests considered
portfolio selection problems in August 2001. The
6.0% 10.0%8.0% 12.0%

%) of Portfolio Losses

Strategy 1

Strategy 2

Strategy 3

No Hedging

ls for alternative hedging strategies (August 2001).
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scenarios were generated so that the statistical prop-
erties of the random variables in each stage matched
their empirical values for the 10 preceding years.
The results obtained at this time are typical of the
model’s observed behavior at other periods.

The efficient frontier of the optimal unhedged
portfolios—i.e., without currency forward con-
tracts—is clearly dominated by the efficient frontiers
of the optimal, selectively hedged portfolios. Incor-
porating decisions for currency forward positions in
the portfolio management model improves the risk-
return profile of the resulting optimal portfolios as
indicated by the shift of the efficient frontier to the
left. That is, for any value of target expected return,
the optimal hedged portfolios exhibit a lower level
of risk. This potential benefit of risk reduction is
increasing for more aggressive targets of expected
portfolio return.

The three strategies that permit currency forward
contracts reflect alternative views of the selective
hedging approach, as they allow the hedge ratios
to be different—and indeed they come out to be dif-
ferent—across currencies. The third strategy exhib-
its the dominating risk-return profile, as it allows
unrestricted use of currency forward positions.
The other two strategies restrict the use of currency
forward contracts so as to (partly) cover the expo-
sure in foreign currency investments. The first strat-
egy (Eq. (3)) limits the levels of currency forward
contracts to the respective current values of foreign
investments in the revised portfolio, while the sec-
ond strategy (Eq. (4)) bounds the levels of such con-
tracts to the expected value of the respective foreign
asset holdings at the end of the decision period.
These two strategies exhibited almost indistinguish-
able risk-return profiles.

We applied the same hedging tactics in backtest-
ing experiments to investigate whether their poten-
tial in the static tests actually materializes in
practice. Fig. 3 contrasts the ex post realized returns
of the different hedging policies over backtesting
simulations covering the period 04/1998–11/2001.
The results were generated by successively applying
the respective two-stage models in each month of
the simulation period and implementing each time
the first-stage optimal decisions of the model. Each
instance of the model again used 15,000 scenarios
(150 outcomes for the first stage, each associated
with 100 further outcomes for the second period)
that were generated as described above.

The first graph in Fig. 3 presents the results for
the minimum risk case—i.e., when the models sim-
Please cite this article in press as: N. Topaloglou et al., A dy
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ply minimize the CVaR risk measure at the end of
the planning horizon without imposing a target on
expected portfolio return. The results in the second
graph were generated when a target l = 2% for
expected return over the two-month horizon
was imposed at each instance of the two-stage port-
folio optimization model (i.e., for an aggressive
investor).

In the minimum risk case, all three selective
hedging strategies resulted in essentially the same
performance. Only the most liberal (third) strategy
fell a little behind in the fall of 1998, but traced clo-
sely the performance of the other two strategies in
all other periods. The performance of optimal
unhedged portfolios was not very different either
in this case. Optimal hedged portfolios exhibited
only a slight advantage in comparison to the opti-
mal unhedged portfolios, in the minimum risk case,
as they demonstrated slightly more stable return
paths. The optimal portfolios were positioned
almost exclusively in short-term government bond
indices throughout these simulations. The models
selected diversified portfolios of short-term interna-
tional bond indices that weathered the storm of the
September 11, 2001 crisis unscathed, and actually
generated profits during that period. That crisis
affected primarily the stock markets for a short
period and had no material impact on the
bond markets, especially the international bond
markets.

The differences in the performance of the alter-
native hedging strategies are more pronounced
when we use a more aggressive target for expected
return, as shown in the second graph of Fig. 3. In
this case all three selective hedging strategies dem-
onstrate material benefits from the reduction of
currency risk through the use of currency forward
positions for hedging purposes. Their realized
return paths over the simulation period are discern-
ibly more stable than the corresponding path of the
optimal unhedged portfolios. The international
hedged portfolios were affected much less than
the undhedged portfolios during market down-
turns (e.g., 08/1998, 01–02/2000, 04/2001, 08–10/
2001).

Again, the first two strategies demonstrated very
similar ex post performance; with the second
strategy being a very slight favorite. The third strat-
egy—with unrestricted positions in currency for-
wards—lagged a bit behind, particularly in periods
of down markets. In these simulations the models
selected portfolios that varied more substantially
namic stochastic programming model ..., Eur. J. Operat.
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Fig. 3. Ex-post realized performance of alternative hedging strategies in two-stage models. The first graph corresponds to the minimum
risk case, while for the second graph the target expected return at the horizon is l = 2%.
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over time, in comparison to the runs for the mini-
mum risk case, in their attempt to meet the high
expected return target. The optimal portfolios also
involved sizable positions in the US stock index
Please cite this article in press as: N. Topaloglou et al., A dyn
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for most of the simulation period, and thus did
not avoid the effects of the crisis in September
2001—even if more mildly than the unhedged port-
folios. The strategies with controlled currency hedg-
amic stochastic programming model ..., Eur. J. Operat.
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ing consistently attained more stable (less volatile)
return paths compared to the returns of unhedged
portfolios and also had lower loses in times of severe
market downturns.

The results of the static and the dynamic tests
show that benefits can be gained, in terms of risk
reduction, by internalizing decisions for currency
forward positions within the portfolio management
models. Regardless of minor details on how per-
missible currency forward contracts may be con-
trolled in the portfolio optimization models, we
observe that the controlled use of forward con-
tracts has a positive impact on reducing risk. The
stochastic programming models prove to be useful
and practical decision support tools for interna-
tional portfolio management. They provide a
flexible framework for incorporating alternative
risk hedging strategies in a dynamic decision
setting.

We adopted the second strategy for the tests that
are presented below as it exhibited more effective
performance than the other hedging alternatives.
Recall that in this strategy the allowable positions
in one-month currency forwards are bounded by
the expected value of asset holdings in the respective
currency during the same term.
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Fig. 4. Efficient frontiers for single- and
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5.2. Comparison of single- and two-stage models

We now turn to a comparative assessment of sin-
gle- and two-stage variants of the stochastic pro-
gramming models. We first examine the
performance of the models in static tests on August
2001. The 15,000 scenarios generated for the previ-
ous static tests were used as input in these tests as
well. We set up and solved two-stage and single-
stage instances of the portfolio selection model.
The single-stage model had the same horizon (two
months) and used the same scenarios as the two-
stage model. Thus, the two models used exactly
the same information content in terms of the out-
comes of the random variables (scenarios), and opti-
mized the same risk measure (CVaR of portfolio
losses at the end of the two-month horizon), starting
with the same initial portfolio—a cash endowment
in the base currency only. The only fundamental dif-
ference was that, unlike the single-stage model, the
two-stage model allowed portfolio rebalancing deci-
sions during the interim month.

The resulting risk-return efficient frontiers of the
two models are shown in Fig. 4. The two-stage
model exhibits a dominating risk-return profile over
the common two-month horizon of the two models;
Two-stage Model

Single-stage Model

10.0%8.0% 12.0% 14.0% 16.0%

) of Portfolio Losses

two-stage models (August 2001).
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for any expected return target, the two-stage model
yields optimal solutions with lower risk than the
solutions of the respective single-stage model. These
results confirm the intuition that when the two mod-
els have the same information content and the same
horizon, then the two-stage model should produce
superior results owing to its additional flexibility
to incorporate rebalancing decisions at an interme-
diate stage.

The intermediate decisions permit the reconfigu-
ration of the portfolio during the planning horizon
for each descendant node of the root in the scenario
tree, i.e., in response to each specific outcome of the
first stage. The same principle applies to extensions
of the model with additional decision stages, as long
as the postulated outcomes (scenarios) remain the
same over the planning horizon.

At the minimum-risk end of the frontier the ben-
efit of the two-stage model over the single-stage
model seems marginal. This is because at the mini-
mum risk case both models exhibit a ‘‘flight to
safety’’, i.e., they select very similar conservative
portfolios composed of short-term international
bond indices. However, the potential benefits for
risk reduction by adopting the two-stage model in
comparison to its single-stage counterpart increase
for increasingly aggressive (higher) targets of
expected return that dictate the selection of riskier
portfolios. In these cases, the flexibility of an interim
readjustment of the portfolio during the planning
horizon in response to changing economic condi-
tions carries a higher incremental value.

The results indicate that for a given representa-
tion of uncertainty, and a specific horizon, it is pref-
erable to allow portfolio rebalancing in as many
stages as captured in the scenario tree rather than
to aggregate decision stages. Of course, this model-
ling choice has significant implications on the size
and computational complexity of the resulting sto-
chastic programs.

Finally, we contrast the performance of the sin-
gle- and two-stage models in dynamic, backtesting
experiments with real market data. Again, the mod-
els were set up and executed repeatedly at successive
time periods according to the procedure we have
explained earlier. From each instance of the models
we kept and implemented only the optimal decisions
for the first stage. The single-stage model has a hori-
zon of one month, while the two-stage model has a
horizon of two months, partitioned into two
monthly decision stages. The scenarios were gener-
ated on a rolling horizon basis; at each month the
Please cite this article in press as: N. Topaloglou et al., A dyn
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scenarios were generated on the basis of the histor-
ical data during the prior 10 years.

In order to assess the effect of adding information
(i.e., additional outcomes in the scenario set) we
experimented with the following variants of the
models:

• a two-stage model that used 15,000 scenarios
(150 · 100) generated as described before,

• a single-stage model that used the 150 first-stage
outcomes of the two-stage model as its scenario
set,

• a single-stage model with a finer representation
of uncertainty for its monthly horizon, comprised
of 15,000 scenarios.

The first two models share the same information
regarding potential outcomes in the month ahead,
but the two-stage model incorporates additional
information for potential outcomes in the following
month. The third model uses a much finer represen-
tation for the distribution of the random variables
in the month ahead.

The ex post realized returns of these models dur-
ing backtesting simulations are shown in Fig. 5. The
first graph corresponds to the experiments with min-
imum risk models, i.e., models that minimize the
risk measure without any constraint on target
expected return. The second graph represents the
use of more aggressive return targets in the models
(a target expected return l = 1% over the monthly
horizon of the single-stage models, and a target
l = 2% over the two-month horizon of the two-
stage model). In all cases, the two-stage model
achieved superior performance, while the single-
stage model with the limited set of 150 scenarios
produced the worst performance. Clearly, the addi-
tion of information in the representation of uncer-
tainty—either with more scenarios for the single-
stage model, or with the extension of the horizon
to consider further outcomes in a second decision
period in a two-stage model—resulted in perfor-
mance improvements. Hence, there is an added
value to finer specifications of distributions (scenar-
ios) in these stochastic programming models.

We now compare the performance of single- and
two-stage models that both use 15,000 scenarios. In
the minimum risk case, their performance is quite
similar. They achieve quite stable growth paths,
with slight losses in only few instances during the
simulations. As we explained earlier, this is a conse-
quence of the selection of very similar portfolios
amic stochastic programming model ..., Eur. J. Operat.
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Fig. 5. Ex-post realized performance of single- and two-stage models. The first graph corresponds to the minimum risk case, while for the
second graph the target expected returns during the planning horizon are l = 1% for the single-stage, and l = 2% for the two-stage
models.
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(composed of the most secure assets) by both mod-
els. But, as expected, the differences in realized per-
formance are more evident when higher target
returns are imposed, forcing the selection of riskier
portfolios. In this case, the two-stage model yields
a clearly superior performance.
Please cite this article in press as: N. Topaloglou et al., A dy
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Figs. 6 and 7 compare the compositions of the
optimal portfolios for the single- and two-stage
models throughout the simulation period. Observe
that in the minimum risk case (Fig. 6) both models
select very similar portfolios. These consist primar-
ily of positions in the short-term US bond index
namic stochastic programming model ..., Eur. J. Operat.



Fig. 6. Compositions of selectively-hedged international portfolios (minimum risk case) during backtesting simulations. The first graph
shows the portfolios selected by the single-stage model, while the second graph shows the portfolios selected by the two-stage model.
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and hedged positions in the short-term government
bond indices of the other three countries; these
instruments exhibited the most stable performance
over the backtesting period. For the more aggressive
targets of expected return, Fig. 7 shows that the
models resort to more diversified portfolios that
Please cite this article in press as: N. Topaloglou et al., A dyn
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include also holdings of stock indices (particularly
in the US stock index). The optimal portfolios of
the two-stage model are more diversified and more
stable over time compared to those of the single-
stage model, thus indicating less active portfolio
turnovers. This can be attributed to the look-ahead
amic stochastic programming model ..., Eur. J. Operat.



Fig. 7. Compositions of selectively-hedged international portfolios (aggressive portfolios) during backtesting simulations. The first graph
shows the portfolios selected by the single-stage model, while the second graph shows the portfolios selected by the two-stage model.
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feature of this model that has a longer horizon and
considers longer-term effects in comparison to the
myopic model when deciding the portfolio
composition.

Finally, we compute some measures to compare
the overall performance of the models. Specifically,
Please cite this article in press as: N. Topaloglou et al., A dy
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we consider the following measures of the ex-post
realized monthly returns over the simulation period:
geometric mean, standard deviation, Sharpe ratio,
and the upside potential and downside risk (UP)
ratio proposed by Sortino and van der Meeer [23].
This ratio contrasts the upside potential against a
namic stochastic programming model ..., Eur. J. Operat.



Table 3
Statistical characteristics of realized monthly returns

Two-stage
model

Single-stage
model (15,000
scenarios)

Single-stage
model (150
scenarios)

Performance measures of monthly realized returns (aggressive

models)

Geometric
mean

0.460% 0.432% 0.430%

Standard
deviation

0.0124 0.0139 0.0143

Sharp ratio �0.0120 �0.0307 �0.0314
UP_ratio 0.9692 0.9501 0.8317

Performance measures of monthly realized returns (minimum risk)

Geometric
mean

0.581% 0.579% 0.484%

Standard
deviation

0.0025 0.0027 0.0042

Sharp ratio 0.4132 0.3796 0.0201
UP_ratio 12.451 11.135 10.377
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specific target (benchmark) with the shortfall risk
against the same target. We use the risk-free rate
of one-month T-bills as the benchmark. The UP_ra-
tio is computed as follows. Let rt be the realized
return of a portfolio in month t = 1, . . . ,k of the
simulation, where k = 43 is the number of months
in the simulation period 04/1998–11/2001. Let qt

be the return of the benchmark (riskless asset) at
the same period. Then the UP_ratio is

UP ratio ¼
1
k

Pk
t¼1 max½0; rt � qt�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
k

Pk
t¼1ðmax½0; qt � rt�Þ2

q ð7Þ

The numerator is the average excess return com-
pared to the benchmark, reflecting the upside poten-
tial. The denominator is a measure of downside risk,
as proposed in Sortino et al. [24], and can be
thought of as the shortfall risk compared to the
benchmark.

The performance measures from the simulation
results are reported in Table 3. The aggressive mod-
Table 4
Size and solution times of models

Model Number of constraints Number of va

Single-stage (150 scenarios) 325 360
Single-stage (15,000

scenarios)
30,026 30,060

Two-stage (15,000 scenarios) 36,782 39,969

Please cite this article in press as: N. Topaloglou et al., A dyn
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els exhibited the worst measures. Each model has a
lower geometric mean and higher standard devia-
tion in the aggressive case than its minimum risk
instance. The Sharpe ratios also have small negative
values for the aggressive models, and the UP_ratios
are small, indicating a low upside potential relative
to downside risk. The expected return targets
(�12.6% annually) that have been used for the mod-
els in the aggressive case proved overly ambitious
and unattainable during the particular simulation
period. We used them simply to distinguish the rel-
ative behavior of the models at different levels of
risk tolerance. The aggressive models attained aver-
age annual returns of 5.7% (two-stage model) and
5.3% (singe-stage model) during the simulation
period. The models fared much better in the mini-
mum risk case, yielding average annual returns of
7.2% (two-stage) and 6.0% (single-stage), while also
exhibiting significantly lower volatility of returns
during this period as can be seen from the low
standard deviation values (see also Fig. 5). The
reported returns of the models are net of transaction
costs.

These results show that the two-stage model
dominated its single-stage counterparts; it consis-
tently achieved the best performance in terms of
both higher growth and greater stability of returns.
In all measures, the single-stage model with the
fewer scenarios had the worst performance, while
the performance of the single-stage model with the
finer scenario set was fairly close to that of the
two-stage model. This observation implies that
there is incremental benefit from increasing infor-
mation content in stochastic programs, with a
higher branching factor in the first stage but also
with the addition of a subsequent stage. The ques-
tion of the sensitivity of the results to the relative
branching factors at different stages of a stochastic
program, considering also the implications of this
decision on the size and computational complexity
of the resulting stochastic programs, remains a
problem-dependent empirical issue.
riables Number of nonzeros Approx. solution time
(seconds)

3860 0.1
375,111 55

444,499 88

amic stochastic programming model ..., Eur. J. Operat.
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Table 4 presents the size and computational
effort required to solve the stochastic linear pro-
grams. The reported solution times reflect an aver-
age for typical problem instances. The models
were solved with IBM’s Optimization Subroutine
Library (OSL) on an IBM RS/6000 44P worsksta-
tion (Model 170 with a 400 MHz Power 3 Risk pro-
cessor, 1Gb of RAM, running AIX 4.3). Observe
the almost proportional increase in solution time
with the increasing number of scenarios for the sin-
gle-stage model, and the larger size and required
solution time for the two-stage model in comparison
to a single-stage model with the same number of sce-
narios. These solution times are by no means pro-
hibitive for realistic instances of the models with
today’s available computing technologies. The
problems can be solved much more efficiently by
employing specialized algorithms that exploit the
structure of stochastic programs, and especially by
resorting to parallel computing systems (e.g., see
[29]). Issues of computational efficiency are not of
primary concern in this study.

6. Conclusions and further research

We developed a stochastic optimization
approach for managing international portfolios of
financial assets in a dynamic setting and demon-
strated its practical viability through extensive com-
putational experiments using real market data. We
formulated a multi-stage stochastic programming
model to address active, international portfolio
management problems. The model provides a useful
and flexible decision support framework as it
encompasses many practical features. It considers
decisions over multiple periods to capture decision
dynamics, it accommodates a multi-stage represen-
tation of the stochastic evolution of the random
variables by means of a scenario tree, and it
accounts for transaction costs.

Our implementation of the model controls the
portfolio’s total risk exposure by minimizing the
conditional value-at-risk (CVaR) of losses at the
end of the planning horizon, while imposing a target
on expected return over the planning horizon. The
CVaR objective minimizes excess shortfall beyond
VaR. CVaR is a coherent risk measure and is appro-
priate for asymmetric distributions. So, its choice is
consistent with the asymmetric and leptokurtic
return distributions exhibited by market data of
international stock and bond indices, as well as by
currency exchange rates. However, the model can
Please cite this article in press as: N. Topaloglou et al., A dy
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be easily modified to accommodate alternative
objective functions to reflect the decision maker’s
risk-bearing preferences, or to incorporate addi-
tional practical constraints (e.g., managerial or reg-
ulatory requirements).

We employed a flexible and realistic scenario gen-
eration method based on principles of moment-
matching. This method generates scenarios so that
key statistics of the random variables match their
observed values so as to closely approximate their
empirical distributions. The scenarios of interna-
tional stock and bond index returns and exchange
rates reflect the correlations, as well as the skewness
and excess kurtosis that these financial variables
exhibit in historical data. Through exhaustive tests,
we verified that the no-arbitrage conditions were
satisfied for all scenario sets that we used in numer-
ical experiments. We have not observed a case in
which the scenario generation method failed to meet
the no-arbitrage conditions. Other appropriate sce-
nario generation methods can also be used in con-
junction with the stochastic portfolio optimization
model.

A contribution of this study is the extension of
the stochastic programming model for international
portfolio management to a multi-stage, dynamic
setting. Another contribution concerns the internal-
ization of decisions for currency forward positions
in the portfolio management model, as means for
mitigating currency risk. The inclusion of explicit
decisions for currency forward contracts enables
the determination of optimal selective hedging deci-
sions to control currency risk exposure of foreign
investments.

The model determines jointly the allocation of
capital to international markets, the transactions
to achieve an optimal portfolio composition (i.e.,
the specific asset holdings in each market), as well
as the levels of appropriate currency forward con-
tracts to minimize the portfolio’s total risk. Thus,
the asset allocation, the portfolio selection, and
the currency risk hedging decisions, that are tradi-
tionally considered separately, are here cast in a uni-
fied decision framework.

The stochastic programming model provides a
flexible framework to assess alternative risk hedging
tactics. We used variants of the model to investigate
the performance of alternative decision strategies in
extensive empirical tests, both in static and dynamic
experiments. We demonstrated that controlled use
of currency forward contracts materially contrib-
utes to the reduction of risk of international portfo-
namic stochastic programming model ..., Eur. J. Operat.
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lios. Selective hedging strategies proved effective in
controlling risk and generating stable return paths
in backtesting simulations with real market data.
Our results also demonstrated the incremental ben-
efits that can be gained from the adoption of
dynamic portfolio optimization models instead of
myopic, single-period models. Two-stage variants
of the model exhibited superior performance in
comparison to corresponding single-stage models,
both in static as well as in dynamic tests. The two-
stage models produced more diversified and stable
portfolios, with lower volatility of returns and
higher resilience during market downturns, and
with lower turnover compared to the decisions of
myopic models. Moreover, our results showed that
finer specifications of distributions (scenarios) of
uncertain input parameters resulted in improved
solutions of the stochastic programs.

The multi-stage stochastic programming model
provides the foundation for the implementation
and empirical investigation of additional decision
strategies. Building on the fundamental structure
of the stochastic programming model, we have
developed extensions that incorporate different
types of options in the international portfolio man-
agement model. We use the stochastic programming
framework to empirically examine the effectiveness
of option-based strategies to control exposure to
different risk factors. In [26] we focus on the use
of straight options, and quantos, on international
stock indices as means of mitigating market risk,
while in [27] we incorporate currency options in
the stochastic programming model and contrast
their risk hedging performance with that of currency
forward contracts.
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