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Abstract. In this article we use the hysteresis model of investment developed by Brennan and Schwartz, and
Dixit, and we extend it to capture the impact of interacting uncertainties on a firm with foreign operations. We
develop a three-country, four-factor model where both continuous revenues and continuous costs are stochastic
and are generated in countries other than the home country of the investor, who has to carry foreign currencies’
risk. All four state-variables follow geometric Brownian motion processes. A critical assumption is made that the
capital outlays for switching between the idle and the active states are constant fractions of the costs. An efficient
numerical solution is used to demonstrate applications of the model on a multinational corporation facing operating
and exchange rate risks in a multistage investment setting with interacting investment and operating options.
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Introduction

Partial irreversibility was first introduced in the literature by Brennan and Schwartz (1985);
soon thereafter Dixit (1989a, 1989b, 1989c) generalized their results and coined the term
hysteresis for the zone of inaction. Specifically, this zone is the area between the upper and
the lower critical asset price. The upper critical price defines when we should invest, thereby
incurring capital cost, receiving variable revenues, and paying variable costs. The lower
critical price defines when we should disinvest, similarly incurring (closing) capital costs.
In the zone in between, if we have not invested, we remain so; likewise, if we have invested,
we remain invested. Thus, crossing either the upper or the lower boundary determines an
action (to invest or to disinvest), that depends on the previous state. This path dependency
makes the valuation of such investment options difficult. Under the assumption of infinitely
lived opportunities we arrive at the solution of a system of four highly nonlinear equations.

Brennan and Schwartz (1985) valued natural resource investments and demonstrated that
the classic Net Present Value (NPV) rule fails under uncertainty and irreversibility-inducing
sunk costs. Dixit (1989a) used the model to show the hysteresis effects in a simplified two-
sector economy with costly capital mobility, and also demonstrated that the hysteresis band
can arise even under certainty. Uncertainty widens this band. Dixit (1989b) used the model
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to show the hysteresis effect in entering in, or exiting from, a foreign market when the
exchange rate follows geometric Brownian motion. This model considers the more general
case of industry equilibrium when the company has the (sequential) option to purchase or
abandon many existing producers. Extensions of the hysteresis model have also appeared
in corporate finance (Mauer and Triantis, 1994), and under foreign exchange as the sole
factor of risk (Mello, Parsons, and Triantis, 1995; Bell, 1995).

In this paper we aim to extend the hysteresis model of investment to capture the effects
of multiple uncertainties. In general, we consider both the underlying continuous revenues
and costs to be stochastic; furthermore, both are multiplicative functions with stochastic
exchange rates. All four state-variables follow geometric Brownian motion processes. A
first effort to include multiplicative uncertainties appeared in the case studies of Crousillat
and Martzoukos (1991), in the context of complete irreversibility and without hysteresis.
There, both the underlying variable and the exercise price are multiplicative functions of
two uncertainties, but the correlation between the two underlying assets, and their drift
terms, are derived subjectively.

We proceed as follows. In the first section we review the hysteresis model of investment.
In the second section we extend the hysteresis model to the case of stochastic variable
costs and exchange rate risk affecting both the continuous revenues and the costs. The third
section provides a set of applications, and the last section summarizes and concludes. In the
Appendix we demonstrate a numerical solution to the general perpetual horizon hysteresis
problem. This method’s efficiency is instrumental for the applications we provide.

1. Review of the hysteresis model of investment

In the standard model, valuation of a claim (or real option) V is contingent on the stochastic
and continuous cash flow R, which follows a geometric Brownian motion process with
drift m and instantaneous variance σ 2. The methods of valuation have been established in
the literature that applies stochastic calculus to valuation of options. Standard results from
stochastic calculus, and application in finance and option valuation can be found in Malliaris
and Brock (1982), Karatzas and Shreve (1991), Black and Scholes (1973), and Merton
(1973a, 1973b) among others. Review of the literature on contingent claims valuation
of investments can be found in Pindyck (1991), Dixit (1992), Dixit and Pindyck (1994),
and Trigeorgis (1996). In general, a continuous time capital asset pricing model (see
Merton, 1973b, or Breeden, 1979) is assumed to hold.

Generally, a continuous cost W would be incurred to sustain the revenue R. The difference
between the discount rate and the growth rate of the revenues is denoted by δ, and is an
opportunity cost of deferring investment in the revenue producing project (see McDonald
and Siegel, 1984); for a convenience yield interpretation, see Brennan and Schwartz (1985),
and Brennan (1991). In general, we assume the absence of market imperfections (taxes,
etc.) and an all-equity firm. In the following we stay closer to the more recent Dixit (1989a)
paper.

The differential equation for the value of the project is

0.5σ 2 R2VR R + (r − δ)RVR − r V + R − W = 0,
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where VR, VR R denote derivatives, and r refers to the exogenously determined riskless
rate of interest. The absence of a time derivative implies an infinite horizon for both the
investment opportunity and the underlying cash flows. In the above differential equation
the term R − W is present when the project is active. When it is idle, the investment option
follows a similar differential equation

0.5σ 2 R2VR R + (r − δ)RVR − r V = 0.

The value of an active project takes the form

V1 = R/δ − W/r + AR−a, (1)

where the first two terms equal the present value of the expected cash flows, and the last
term equals the value of the option to temporarily abandon. For an inactive project, the
value of the investment option equals

V0 = B Rβ. (2)

The terms –a and β are the two roots of the quadratic equation

f (Q) = 0.5σ 2 Q(Q − 1) + (r − δ)Q − r = 0,

and they equal

0.5 − (r − δ)/σ 2 ± √{[(r − δ)/σ 2 − 0.5]2 + 2r/σ 2}. (3)

Root β with the positive second part is greater than unity, and root –a is negative.
The two valuation equations involve the unknown values of the active project V1, the

idle V0 project, and the parameters A and B. We need two more equations to solve this
infinite horizon problem. Since these equations will involve two new unknowns for the
trigger points (the upper and lower critical levels of revenue) we actually need four new
equations. The first two are the value-matching conditions

V1(RH ) − k = V0(RH ),

V0(RL) − l = V1(RL),
(4)

and two more are provided by the smooth pasting conditions

V1R(RH ) = V0R(RH ),

V0R(RL) = V1R(RL).
(5)

In the above, RH and RL denote the critical values of the cash flow at which investment or
disinvestment is triggered; subscript R implies the derivative. The sunk capital costs k and l
are the costs needed to either invest or disinvest. The value functions impose continuity on
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the value of the investment before and after the trigger to either invest or disinvest. This
is equivalent to precluding arbitrage at these trigger points. The smooth pasting conditions
imply continuity of the derivatives.

The values V1 and V0 are substituted into these four conditions, and a nonlinear system of
four equations with four unknowns (the parameters A and B, and the trigger points RH and
RL ) must be solved. They can be solved iteratively through a four-dimensional Newton-
Raphson method. An approximate solution to this problem is given by Dixit (1991), who
has also studied the convergence properties of this nonlinear system. The method proposed
in the Appendix reduces the numerical solution to the most appropriate two-dimensional
Newton–Raphson scheme and is very efficient.

For the purposes of this paper and for reasons that will become apparent in the next section,
we must demonstrate that the homogeneity property of the option values in the underlying
asset and the exercise price (shown in Merton, 1973) also applies to the hysteresis model. The
question involves the terms AR−a and B Rβ that are included in the valuation equations (1)
and (2), respectively, for the active V1 and the idle V0 project. We must show that in these two
terms we can replace R with the ratio R/W , and then multiply the two terms by W without
affecting the results (see Appendix for the numerical solution methodology). The parameters
A and B are both functions of RH and RL (again, refer to Appendix), equations (A2) for A
and (A3) for B. After replacing RH and RL with RH/W and RL/W , the parameters A and
B become functions of W −1−α and W −1+β . But the terms W (R/W )−a and W (R/W )β are
functions of W α+1 and W −β+1 and the term W cancels out. Note that in the value-matching
conditions (4), the switching costs k and l must also be replaced with k/W and l/W , an
important point with implications that will become clear in the next section. Thus, we have
demonstrated that the hysteresis option is homogeneous of degree 1 in (R, W, k, l).

2. Stochastic costs and exchange rate risk

To price a claim dependent on stochastic state-variables, we draw on Constantinides (1978),
Harrison and Kreps (1979), Harrison and Pliska (1981), and Cox, Ingersoll, and Ross (1985).
We assume that both the revenues R and costs W are stochastic, drawing on McDonald and
Siegel (1986), who consider the real option to wait-to-invest with a stochastic exercise price
(in the context of complete irreversibility and the absence of hysteresis). Furthermore, both
cash flows are products of two uncertainties, and all four state-variables follow geometric
Brownian motion processes. R is the product of AR and the exchange rate E R, and W is
the product of AW and the exchange rate EW . The fixed costs to invest k = kq W , and
to disinvest l = lq W are constant fractions of W . We price the contingent claim under
risk-neutrality from the perspective of the option holder. The foreign currencies follow (see
Garman and Kohlhagen, 1983; Grabbe, 1983) the stochastic processes

d E R/E R = (r − rR) dt + σE R dzE R,

and

d EW/EW = (r − rW ) dt + σEW dzEW ,
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where r is the local, and rR, rW are the foreign riskless rates of interest. For all three countries
we assume that the real and nominal rates are the same (no inflation). The two foreign assets
before they are translated to the option holder’s currency (the original reference from an
options pricing perspective is Reiner, 1992, and Kat and Roozen, 1994, provide explicitly
the risk-neutral process), follow

d AR/AR = (rR − δAR − σAR,E R) dt + σAR dz AR,

and

d AW/AW = (rW − δAW − σAW,EW ) dt + σAW dz AW .

We see that the risk-neutral drifts include not only the (local) dividend yields, but also the
instantaneous covariance between the exchange rate and the cash flow (see Siegel’s paradox
in Hull, 1997, pp. 298–301). It is known that the partial differential equation (PDE) for the
claim dependent on AR, E R, AW, and EW is

0.5σ 2
AR AR2 VAR,AR + 0.5σ 2

AW AW 2 VAW,AW + 0.5σ 2
E R E R2 VE R,E R

+ 0.5σ 2
EW EW 2 VEW,EW + σAR,E R AR E R VAR,E R + σAW,EW AW EW VAW,EW

+ σAR,EW AR EW VAR,EW + σE R,AW E R AW VE R,AW + σAR,AW AR AW VAR,AW

+ σE R,EW E R EW VE R,EW + (rR − δAR − σAR,E R)AR VAR + (rW − δAW

− σAW,EW )AW VAW + (r − rR)E R VE R + (r − rW )EW VEW − r V + AR E R

− AW EW = 0.

The solution to such a problem would be practically infeasible if it were not for the specific
structure that we impose. We will be able to reduce the dimensionality of the problem by
using the costs W as a numeraire, since we have demonstrated in the previous section that
the homogeneity property of the option values applies to the hysteresis model. To simplify
the exposition we will first use the standard Ito calculus tools and reduce the PDE from
one of four state-variables to one of two asset prices, the cash flows R and W . Using the
multi-dimensional form of Ito’s lemma it can be easily shown that from the perspective of
the option holder and under risk-neutrality

d R/R = (r − δAR) dt + σR dzR,

and

dW/W = (r − δAW ) dt + σW dzW ,

with

σ 2
R = σ 2

AR + σ 2
E R + 2σAR,E R,

σ 2
W = σ 2

AW + σ 2
EW + 2σAW,EW , (6)

σR,W = σAR,AW + σAR,EW + σE R,AW + σE R,EW .
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The two-dimensional PDE for the active project is

0.5σ 2
R R2VR R + (r − δAR)RVR + 0.5σ 2

W W 2VW W + (r − δAW )W VW

+ σR,W RW VRW − r V + R − W = 0,

and a similar PDE obtains for the idle project (without the term R − W ). The two value-
matching conditions are

V1(RH , W ) − kq W = V0(RH , W )

V0(RL , W ) − lq W = V1(RL , W ),
(7)

with four smooth-pasting conditions

V1R(RH , W ) = V0R(RH , W )

V0R(RL , W ) = V1R(RL , W )

V1W (RH , W ) − kq = V0W (RH , W )

V0W (RL , W ) − lq = V1W (RL , W ).

(8)

Using

V (R, W, k, l) = Wv(R/W ) = Wv(R′), R′ = R/W

and

VR = · · · = vR′

VW = · · · = v − R′vR′

VR R = · · · = vR′ R′/W

VW W = · · · = R′2vR′ R′/W

VRW = · · · = −R′vR′ R′/W

we substitute into the earlier PDE, to finally get an ordinary differential equation

0.5σ 2 R′2vR R + (δAW − δAR)R′vR − δAW v = 0,

with the variance defined by

σ 2 = σ 2
R + σ 2

W − 2σR,W . (9)

We also get the new value-matching conditions

v1(R′
H ) − kq = v0(R′

H )

v0(R′
L) − lq = v1(R′

L)
(10)
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and the new smooth-pasting conditions

v1R′(R′
H ) = v0R′(R′

H )

v0R′(R′
L) = v1R′(R′

L)

v1(R′
H ) − kq − R′

Hv1R′(R′
H ) = v0(R′

H ) − R′
Hv0R′(R′

H )

v0(R′
L) − lq − R′

Lv0R′(R′
L) = v1(R′

L) − R′
Lv1R′(R′

L)

(11)

where the last two smooth-pasting conditions can be derived from the first two and the
value-matching conditions (10), and are thus redundant. As in Margrabe (1978), and since
the homogeneity property holds, we have reduced the dimensionality of the problem as-if
only one variable is stochastic. One critical assumption is emphasized: Due to the boundary
(value-matching) conditions given in equations (4) and (10), the switching costs to invest
k and to disinvest l must be constant fractions of W , and in effect, stochastic. This is the
same assumption that was used in Carr (1988), and which allowed the extension of Geske’s
(1977) compound option to the case of stochastic exercise prices using Margrabe’s (1978)
results. In the resulting equations, we need to remultiply by W in order to rescale.

Finally, the value of the active project equals

V1 = R/δR − W/δW + AR−a, (12)

and the value of the option to invest when the project is idle equals

V0 = B Rβ. (13)

The terms –a and β are again the two roots of the quadratic equation

f (Q) = .5σ 2 Q(Q − 1) + (δW − δR)Q − δW = 0,

and they equal

0.5 − (δW − δR)/σ 2 ± √{[(δW − δR)/σ 2 − 0.5]2 + 2δW /σ 2}, (14)

with the effective variance term defined in equation (9). Now we can solve for the parameters
A and B, and for the upper and lower trigger points RH and RL , and thus value the claim
in both the idle and the active modes.

As shown in Dixit (1989a) and Dixit and Pindyck (1994, pp. 213–229), the claim value
and the width of the hysteresis zone are increasing in the variance. Noting the dependence
of equation (9) on the terms in equations (6), that variance is a decreasing function of
the correlation between revenues and costs ρAR,AW , the correlation between revenues and
the exchange rate for costs ρAR,EW , the correlation between the costs and the exchange
rate for the revenues ρE R,AW , and the correlation between the two exchange rates ρE R,EW .
The effective variance is also increasing in the correlation between the costs and the exchange
rate for the costs ρAW,EW , and in the correlation between the revenues and the exchange
rate for the revenues ρAR,E R . In the above, all exchange rates and correlations are calculated
from the home country’s perspective. We must note that all riskless interest rates appear
to vanish, although they are practically embedded in the dividend yields δW and δR . Our
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three-country model also allows directly for the two- or the one-country model as a special
case, when the operation cost W is stochastic. When W is fixed (constant, and defined not
in foreign but in home currency), the riskless rate of the home country can be recovered
if we note that, by definition, the dividend yield (see McDonald and Siegel, 1984, 1986)
equals the required return on W minus the expected growth rate, in which case we get
δW = RW − mW = r − 0 = r . In the next section we first provide a direct application of
this extended version of the hysteresis model, and then an implementation in a multistage
setting that captures interactions between investment and operating decisions.

3. Applications

We discuss two applications of the hysteresis model for a multinational corporation facing
multiple uncertainties. We first demonstrate the valuation of a productive operation with
stochastic revenues and costs in a three-country setting; thus, exchange rate risks affect
both cash flows. Then, we provide a richer framework that captures interactions between
wait-to-invest and operating options. The (compound) option to the rights to that operation
is an option to wait-to-invest, and its underlying asset is the productive operation, valued
endogenously with the use of the hysteresis model. Numerical simulations demonstrate
the significance of the volatility and the correlation structure on valuation and optimal
investment/operating decisions.

Brennan and Schwartz (1985) and Dixit (1989a) examined the importance of the hystere-
sis model in relation to a single cash flow uncertainty, whereas Pindyck (1993) presented a
valuation model of operations with flexibility where costs are the main source of uncertainty.
Dixit (1989b), Bell (1995), and Mello et al. (1995) investigated the importance of currency
fluctuations as the single source of uncertainty within the hysteresis framework. Barham
et al. (1998) identified the role of hysteresis effects in explaining the strategic behavior in the
natural resources extracting industries in the Americas, and Lund (1999) identified the need
for operational flexibility in the exploitation of the Norwegian oil reserves. Moel and Tufano
(1999) provided emperical evidence that both revenue and cost uncertainty contribute to
hysteresis. Our extension of the (operational flexibility) hysteresis model naturally incorpo-
rates revenue, cost and exchange rate uncertainty in an international setting. Our model with
the resulting hysteresis zone is clearly demonstrated in the first application. Consider the
corporation (in the home country) that owns the option to operate in a second country where
it is incurring continuous costs (wages, etc.) denominated in foreign currency; at the same
time, this operation is generating revenues in a third country, again denominated in foreign
currency. The parameter values for the base case appear at the bottom of Table 1. With the
use of equations (6) and (9) we get the effective standard deviation σ = 0.2208. Through
the numerical solution described in the Appendix we get the upper and lower trigger points
RH and RL that appear in Table 1, the values of the active (through equation 12) and the idle
(through equation 13) operations V1 and V0, and the optimal operating decision. The first
four lines remind us of the basic insights gained from the original hysteresis model, while
the rest demonstrate the impact of the correlation and the volatility structure of our extended
version of the hysteresis model on the optimal operating decisions and the option value.
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Table 1. A multinational operation with switching options and multiple uncertainties

Upper Low Active Value Idle Value Optimal
Trigger Trigger (V1), Less (V0), Less Operating
RH RL Opening Cost k Closing Cost l Decision

Base Case 2.3752W 0.5192W 10.3514, −5 5.7818, −2 Do not Switch

R = 1.5 2.3752W 0.5192W 5.5546, −5 2.7475, −2 Do not Switch

R = 0.6 2.3752W 0.5192W −1.6272, −5 0.2569, −2 Do not Switch

k = 2W, l = 1W 1.8004W 0.6194W 10.5022, −2 — Active Mode

ρAR,AW = ρE R,EW = 0.45,

ρAR,EW = ρE R,AW = 0.25, 1.7754W 0.6764W 10.0035, −5 — Active Mode
ρAR,E R = ρAW,EW = −0.25

ρAR,AW = ρE R,EW = 0.45,

ρAR,EW = ρE R,AW = 0.25, 1.7754W 0.6764W — 0.0026, −2 Idle Mode
ρAR,E R = ρAW,EW = −0.25,

and R = 0.6

σEW = σE R = 0 2.2144W 0.5512W 10.2015, −5 5.3928, −2 Do not Switch
(No Currency Risk)

σEW = σE R = 0.25 3.0160W 0.4311W 11.1222, −5 7.4649, −2 Do not Switch
(High Currency Risk)

ρAR,E R = ρAW,EW = −0.50 1.9722W 0.6117W 10.0489, −5 — Active Mode

ρAR,E R = ρAW,EW = 0.50 2.6214W 0.4793W 10.6275, −5 6.4337, −2 Do not Switch

ρE R,EW = −0.50 2.5171W 0.4951W 10.5053, −5 6.1545, −2 Do not Switch

Note: For the base case parameter values used are: continuous revenues R = 2, continuous costs W = 1,
opening costs k = 5W , closing costs l = 2W , dividend yield for revenues and costs δAR = δAW = 0.10; the stan-
dard deviations σAR = 0.15 for the revenues, σAW = 0.15 for the costs, σE R = 0.1 for the exchange rate with the
country where revenues are generated, and σEW = 0.1 for the exchange rate with the country where the costs are in-
curred; and the correlations ρAR,AW = 0.25, ρAR,EW = 0.05, ρE R,AW = 0.05, ρE R,EW = 0.25, ρAR,E R = 0.05,

and ρAW,EW = 0.05. “Do not switch” demonstrates the existence of hysteresis: if operation was in the active
mode, it remains active, and if it was in the idle mode, it remains idle.

In the first line (the base case) the operation falls within the hysteresis zone. We see
that if the project is idle, it should remain idle, since to receive a value of V1 = 10.3514
we must pay k = 5W = 5 for a net benefit of 5.3514 < 5.7818 = V0. The project will
remain idle until revenues R exceed 2.3752W . Similarly, if the project is active it should
remain active. Similar results we observe when R = 0.6. The value of the active project
is −1.6272 and the value of the idle project is 0.2569. Again, if the project is idle it
should remain idle. If it is active, it should remain active until revenues R drop below
0.5192W , since to close management must incur cost l = 2W = 2 in order to receive
0.2569, and the active project value of V1 = −1.6272 is preferred to switching off for a
value of 0.2569 − 2 = –1.7431 = V0. Higher revenues (R = 1.5) leave the hysteresis
zone unaffected and increase option values. In the fourth line, we see that lower switching
costs provide a narrower hysteresis zone and also increase option values.

The hysteresis zone is affected by the correlation structure: as shown in the fifth and the
sixth lines, the zone becomes substantially narrower when the correlations between each
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capital flow and the relevant exchange rate are lower and all the rest are higher (since now
the effective standard deviation σ = 0.0758). For that correlation structure, with revenues
R = 2 the project should be active, and if revenues were R = 0.6 the project should be
idle, in contrast with the first and third lines, respectively, were the project would fall within
the hysteresis zone. We can observe similar results in the last three lines, where selected
correlations are changed to further demonstrate the impact on the hysteresis zone. Although
the direction of the impact of individual volatilities is in general ambiguous, the volatility
structure can widen or narrow this zone significantly. See our example without currency
risk (σE R = 0 and σEW = 0) where the hysteresis zone becomes narrower, and with high
currency risk (σE R = 0.25 and σEW = 0.25) where the zone widens considerably. We have
see that the correlation and volatility structure (and the switching costs k and l) significantly
affect the zone of hysteresis and the optimal operating decision.

In the model discussed so far we have assumed that the flexible operation is already
owned and practically ready to be switched on and off. But often, before this is the case,
exploration/development costs must be incurred, which will add a compound option frame-
work (see Geske, 1977; Carr, 1988) to the analysis. This sequential decision model is studied
numerically in Paddock et al. (1988) with the assumption of no operational flexibility, as an
extension of the McDonald and Siegel (1986) option to wait-to-invest. However, interactions
of operational flexibility and investment decisions are important (for general discussions
see Trigeorgis, 1993, 1996; for extensive studies of such interactions in the absence of
hysteresis see Martzoukos and Trigeorgis, 1998). In the second application we extend the
model to such a compound option framework, thus incorporating both operational flexibil-
ity and optimal investment decision-making in the presence of revenue, cost, exchange rate
uncertainty, and hysteresis-inducing switching costs. We demonstrate the sensitivity of op-
timal investment decisions on parameter values, and also show large deviations between the
option value of such investments and the NPV of cash flows (thus explaining the observed
practice of “over-paying” for such investment rights; see the recent Business Week article,
“Exploiting Uncertainty”). Think of a multinational corporation that does not yet own, but
has (or considers the purchase of) the option to acquire the rights to the flexible operation.
Since that operation already includes the option to switch back and forth with switching
costs k and l as defined earlier, the option to that operation is a compound one (see Figure 1).
This compound option can be exercised at some cost X up to time T (an American-type
option), or at exactly time T (a European-type option). The hysteresis model provides the
value of the productive entity with the flexibility to switch between modes of operation,
whereas the option to acquire the rights to that entity is a real option to wait-to-invest where
the underlying asset must be calculated endogenously using the hysteresis model.

Figure 1. The two-stage investment option with hysteresis.
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For the base case we use the same parameter values as in the first application. We need to
make the additional assumption that the cost X of exercising the real option is proportional to
the continuous costs W of operation. Thus, X is stochastic and dependent on the same state-
variable(s) as W . We will assume that the investment opportunity expires at T = 2 years, and
that if the investment option is exercised the operation will become active for the first time
(and switching costs k will be incurred). We implement a binomial lattice with 200 steps
and value both the European and American options on that productive operation. For the
European investment option the hysteresis model is employed 201 times at maturity. For the
American option the hysteresis model is employed 20301 times up to maturity to test for
early exercise. Of course, we need to calculate the hysteresis band only once, and then apply
the model to price the option for different values of the underlying state-variables. In such
applications, the efficiency of the approach we develop in this paper is indeed critical. The
numerical results for the value of investing now (acquiring the operation with the embedded
option to switch on and off optimally), the European investment option (without optimal
investment timing), the American investment option (with optimal investment timing), and
the optimal investment decision are shown in Table 2. The results that can be contrasted with
the readily calculated NPV (= R/δR − W/δW − X − k), and the impact of the correlation
structure and the yearly revenues on optimal investment decision are shown. At time zero
the value of the productive option is 10.3514, but in addition to the cost X = 2, k = 5 would
have to be paid if it should get into the active mode. Since the American investment option
of 4.0974 is greater than acquiring the rights immediately and opening the operation at a
cost of 10.3514 − (X + k) = 3.3514, the optimal investment decision is to wait. The first
three lines clearly demonstrate that the NPV criterion can be grossly misleading, since it
ignores both options to acquire the operation at optimal timing and to operate optimally.

If we use the correlation structure with an effective standard deviation σ = 0.0758
(fourth line), we get a European compound option value of 2.5064. But since the American
option value of 3.0035 equals the value of the operation if we invest immediately (after
costs X and k are paid), investing (not waiting) is the optimal decision. In the last two
lines for revenues R = 2.6, a change in the correlation structure from the base case to
ρAR,E R = ρAW,EW = 0.50 shifts the investment decision from “invest” to “wait”. This
change in the optimal investment policy was not possible for revenues R = 3, in which case
the investment option was sufficiently in-the-money and it should be exercised for either
correlation structure. Even if the optimal investment decision stays the same, the value of
the investment rights (the compound option) can be affected significantly with a change in
the correlation structure, as the previous three lines indicate. Similar effects can be observed
with changes in the volatility structure, where the case of high currency risk gives option
values almost double the case of no currency risk.

4. Summary and conclusions

This paper has demonstrated the hysteresis model of investment extended to the case of
stochastic revenues and costs, and where both cash flows are generated in different foreign
countries with stochastic exchange rates. If one of these cash flows occurs in the home
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Table 2. Value of the (real) investment option to a multinational operation

Investment Investment
Option without Option with Optimal
Optimal Optimal Investment

Value of Investing Now Timing Timing Decision

Base Case 10.3514 − 5 − 2 3.8512 4.0974 Wait
(NPV = 3) = 3.3514

R = 1.5 5.5546 − 5 − 2 1.3325 1.3571 Wait
(NPV = −2) = −1.4454

R = 0.60 −1.6272 − 5 − 2 0.0018 0.0018 Wait
(NPV = −11) = −8.6272
ρAR,AW = ρE R,EW = 0.45,

ρAR,EW = ρE R,AW = 0.25, 10.0035 − 5 − 2 2.5064 3.0035 Invest
ρAR,E R = ρAW,EW = −0.25. = 3.0035

σEW = σE R = 0 10.2015 − 5 − 2 3.4074 3.6681 Wait
(No Currency Risk) = 3.2015

σEW = σE R = 0.25 11.1222 − 5 − 2 5.5772 5.8347 Wait
(High Currency Risk) = 4.1222

ρAR,E R = ρAW,EW = −0.50 10.0489 − 5 − 2 2.8091 3.1392 Wait
= 3.0489

ρAR,E R = ρAW,EW = 0.50 10.6275 − 5 − 2 4.5362 4.7792 Wait
= 3.6275

ρE R,EW = −0.50 10.5053 − 5 − 3 4.2474 4.4899 Wait
= 3.5053

R = 3 20.1847 − 5 − 2 10.9866 13.1847 Invest
(NPV = 13) = 13.1847

ρAR,E R = ρAW,EW = 0.50 20.3857 − 5 − 2 11.4261 13.3857 Invest
R = 3 (NPV = 13) = 13.3857

R = 2.6 (NPV = 9) 16.2318 − 5 − 2 7.9444 9.2318 Invest
= 9.2318

ρAR,E R = ρAW,EW = 0.50 16.4580 − 5 − 2 8.4970 9.5232 Wait
R = 2.6 (NPV = 9) = 9.4580

Note: Parameter values for the productive operation with switching options are as in the base case in Table 1.
The cost X of exercising the investment option is 2W = 2. The investment can be deferred for T = 2 years (option
maturity). We employ a 200-steps lattice. Investment option with optimal timing implies an American option with
the early exercise feature.

country, or if both occur in the same foreign country, the model becomes a special case of
the more general framework. If either of the cash flows is constant in a foreign country,
the model is again a special case of the general one, but with the riskless rate of that
foreign country replacing the relevant dividend yield. A critical assumption was made that
the costs of switching between the idle and the active states are constant fractions of the
costs. Our solution for the case of such higher dimensionality provides for more realistic
applications.
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Two trigger points define the hysteresis zone, which is affected by the effective variance.
This variance decreases when the following correlations increase: the correlation between
the revenues AR and the costs AW ; the correlation between the exchange rates E R and
EW ; the correlation between AR and EW ; and the correlation between E R and AW . The
variance increases when the following correlations are higher: the correlation between AR
and E R; and between AW and EW . The model assumes partial irreversibility of investment.
The interaction of uncertainties in the context of complete irreversibility and N underlying
assets (but in the absence of hysteresis) can be found in Martzoukos (1997).

An efficient numerical approach to solve the general hysteresis problem under infinite
horizon with (or without) foreign exchange uncertainty is demonstrated in the Appendix.
Such efficiency is instrumental for the solution of the more general multistage problems with
interacting investment and operating options that we demonstrated. Assuming that all costs
to enter the next stage of multistage options are constant fractions of the continuous operating
costs, the dimensionality of the investment option is, for practical purposes, reduced from
four to one. In that more general framework we considered a two-stage problem partition.
In the first stage, the decision to invest in the productive operation must be optimally made.
Once such a decision has been positive, the optimal operating decisions must be made
continuously, with hysteresis affecting the optimal switching points between the active and
idle modes.

Appendix: An efficient numerical method for solving the infinite horizon
hysteresis model

We propose a specific method to solve the general hysteresis model. The specific form of
the solution is very efficient because we reduce the dimensionality of the problem from
a nonlinear system of four equations with four unknowns, to a nonlinear system of two
equations with two unknowns. It is important to note that we restrict to the two unknowns
(the two trigger points) for which we have information, thus considerably reducing the
numerical search process. We know that the upper trigger point is restricted to be equal
to or greater than W . Also the lower trigger point is restricted to be less than or equal to
W , and greater than zero. In addition, the specific solution form that we implement is used
in the first section of this paper to demonstrate the homogeneity property of the hysteresis
model. The solution method follows.

We must solve the following system of four equations, derived from the value matching
and the smooth pasting conditions

B Rβ
H − AR−a

H − RH/δ + W/r = −k,

B Rβ
L − AR−a

L − RL/δ + W/r = l,

β B Rβ
H + a AR−a

H − RH/δ = 0,

β B Rβ
L + a AR−a

L − RL/δ = 0.

(A1)
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The system of equations (A1) is transformed to a system of two equations. Note that from
the third and the fourth equations we get

B = [
R1−β

H

/
δ − a AR−a−β

H

]/
β,

and

A = R1+a
L

/
(aδ) − Rβ

L

[
R1−β

H

/
δ − a AR−a−β

H

]/(
a R−a

L

)
,

thus we eliminate A and B from the RHS using

A = [
R1+a

L

/
(aδ) − Rβ+a

L R1−β
H

/
(δa)

]/[
1 − Rβ+a

L R−a−β
H

]
, (A2)

and

B = R1−β
H

/
(βδ) − [

R1+a
L R−a−β

H

/
(βδ) − Ra+β

L R1−a−2β
H

/
(βδ)

]/[
1 − Rβ+a

L R−a−β
H

]
. (A3)

By substituting back into the first two equations of (A1), we get

RH [1/(βδ) − 1/δ] − {[
a R1+a

L R−a
H − a Ra+β

L R1−a−β
H + β R−a

H R1+a
L

− Ra+β
L R1−a−β

H β
]/[

aβδ
(
1 − Ra+β

L R−a−β
H

)]} + W/r + k = 0, (A4)

and

Rβ
L R1−β

H

/
(βδ) − RL/δ − {[

a R1+a+β
L R−β−a

H − a Ra+β
L R1−a−2β

H + β RL

− Rβ
L R1−β

H β
]/[

aβδ
(
1 − Ra+β

L R−a−β
H

)]} + W/r − l = 0. (A5)

To implement a two-dimensional, Newton-Raphson scheme we need to calculate the
[2 × 2] Jacobian matrix of the analytic derivatives. The components of this matrix are
denoted as J ′

0(RH ), J ′
1(RH ), J ′

0(RL), J ′
1(RL). The term in parenthesis denotes the variable

of partial differentiation, and the subscript of zero or one implies that this corresponds to
the equation (A4) or equation (A5), respectively. We get

J ′
0(RH ) = 1/(βδ) − 1/δ + {[

a2 R1+a
L R−1−a

H + aβ R−1−a
H R1+a

L

+ a(1 − a − β)Ra+β
L R−a−β

H + (β − βa − β2)Ra+β
L R−a−β

H

]/[(
1

− Ra+β
L R−a−β

H

)
aβδ

]} + {[
a R1+a

L R−a
H − a Ra+β

L R1−a−β
H + β R−a

H R1+a
L

− β Ra+β
L R1−a−β

H

][
(a+β)Ra+β

L R−a−β−1
H

]/[(
1 − Ra+β

L R−a−β
H

)2
aβδ

]}
,

J ′
0(RL) = −{[

a(1 + a)Ra
L R−a

H − a(β + a)R−1−a−β
H R−1+β+a

L + β(1 + a)Ra
L R−a

H

+ (a + β)Ra+β−1
L R1−a−β

H

]/[(
1 − Ra+β

L R−a−β
H

)
aβδ

]}

− {[
a R1+a

L R−a
H − a Ra+β

L R1−a−β
H + β R−a

H R1+a
L

− β Ra+β
L R1−a−β

H

][
(a + β)R−1+a+β

L R−a−β
H

]/[(
1 − Ra+β

L R−a−β
H

)2
aβδ

]}
,
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J ′
1(RH ) = (1 − β)Rβ

L R−β
H

/
(βδ) − {[

a(−a − β)R1+a+β
L R−1−a−β

H

−a(1 − 2β − a)R−a−2β
H R2β+a

L − β(1 − β)Rβ
L R−β

H

]/[(
1 − Ra+β

L R−a−β
H

)
aβδ

]}

− {[
a R1+a+β

L R−a−β
H − a Ra+2β

L R1−a−2β
H + β RL

− β Rβ
L R1−β

H

][
(−a − β)Ra+β

L R−a−β−1
H

]/[(
1 − Ra+β

L R−a−β
H

)2
aβδ

]}
,

J ′
1(RL) = Rβ−1

L R1−β
H

/
δ − 1/δ − {[

a(1 + a + β)Ra+β
L R−a−β

H

− a(2β + a)R1−a−2β
H R2β+a−1

L + β − β2 Rβ−1
L R1−β

H

]/[(
1 − Ra+β

L R−a−β
H

)
aβδ

]}

− {[
a R1+a+β

L R−a−β
H − a Ra+2β

L R1−a−2β
H + β RL

− β Rβ
L R1−β

H

][
(a + β)Ra+β−1

L R−a−β
H

]/[(
1 − Ra+β

L R−a−β
H

)2
aβδ

]}
.

The above elements of the Jacobian J are utilized in a two-dimensional, Newton–Raphson
method to solve the system of the two nonlinear equations F(RH , RL) = 0. For a small
change in R equal to dR, we get

F(R + dR) = F(R) + JdR

where higher order terms of the two-dimensional Taylor series expansion are neglected. We
set the two equations equal to zero, thus we get −F(R) = JdR. The terms dR are derived
from the expansion of the above matrix equation to the two equations

J ′
0(RH )dH + J ′

0(RL)dL = −F0,

J ′
1(RH )dH + J ′

1(RL)dL = −F1,

which are solved for dH , and dL

dL = [−F1 + F0 J1(RH )/J ′
0(RH )]/[J ′

1(RL) − J ′
1(RH )J ′

0(RL)/J ′
0(RH )],

dH = [−F0 − J ′
0(RL)dL ]/J ′

0(RH ).

We use dR to iterate according to R1 = R0 + dR until convergence to required numerical
accuracy. Note that the search for RH and RL is restricted to RH ≥ W and W ≥ RL ≥ 0.
From RH and RL , we calculate the parameters A and B, and subsequently we can price the
operation in the active and in the idle modes.
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