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Real Options with Incomplete Information and Multi-Dimensional Random Controls 

 

 

Abstract 

 

In this paper we provide a real (investment) options´ valuation method with controls that 

capture managerial intervention and learning (exploration, R&D, advertising, marketing 

research, etc.).  In contrast to the standard wait-and-see approach of the real options literature, 

we assume that managers possess the ability to intervene either for value enhancement, or for 

information acquisition, and of course they wish to do so optimally.  We assume the presence 

of multiple stochastic state-variables that follow Geometric Brownian motion (GBM), or 

jump-diffusion processes. Activated controls can affect several or all of the state-variables, 

and the outcome of control activation is random. For the case first of GBM processes, an 

analytic solution is provided to value the real claim in the presence of such multi-dimensional 

controls, and a Markov-chain numerical method is demonstrated for more complex 

applications. The method of random controls is similarly extended to the case where the state-

variables follow jump-diffusion processes, with multiple classes of jumps.  An analytic 

solution is provided, and again a Markov-chain numerical method is demonstrated.  

Neglecting the effect of such actions, causes a serious underestimate of the value of real 

options and leads to erroneous decision making. 
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I. Introduction 

 

Contingent claims valuation (see Black and Scholes, 1973, and Merton, 1973) has 

been extended to the case of valuation of investments under uncertainty (i.e., McDonald and 

Siegel, 1986; for extensive review see Dixit and Pindyck, 1994, and Trigeorgis, 1996).  

Numerical methods (for example the lattice techniques in Boyle, Evnine, and Gibbs, 1989, 

Kamrad and Ritchken, 1991, and Ekvall, 1996) allow valuation in the presence of several 

state-variables that follow GBM, for both European and American options, in simple and 

complex applications. The standard GBM assumption was extended in order to capture rare 

events by Merton (1976) to that of mixtures of GBM with randomly (Poisson) arriving rare 

events often described as jump-diffusion (see also Jones, 1984, Ball and Torous, 1985, Bates, 

1991, and Amin, 1993). 

Here we value real (investment) options in the presence of costly controls (acts of 

intervention) with random outcome (learning), in contrast to the practically standard wait-

and-see approach.  We extend the method proposed in Martzoukos (1998) by allowing the 

presence of multiple state-variables (instead of a single), which are assumed to follow not 

only GBM but also jump-diffusion processes.  The assumption of multiple state-variables or 

asset prices has long been considered important as we know from the economics literature 

(i.e., Roberts and Weitzman, 1981, Gallini and Kotowitz, 1988) and as we can also see in the 

most recent real options literature (Childs et. al., 1998, Childs and Triantis, 1999).  Jump-

diffusion assumptions are important when there exist multiple classes of rare events, and each 

class can affect one or several state-variables, with these effects described by the joint 

probability distribution for each class of events.  The importance of multiple classes (sources) 

of rare events has been identified in Martzoukos and Trigeorgis (1999) who value real options 

with a single state-variable.  Such events are due for example to technological innovations 

(see Greenwood et. al., 1997), competitive entry (see Dunne et. al., 1988, and Ghemawat and 

Kennedy, 1999), regulatory uncertainty (see Brennan and Shwartz, 1982, and Teisberg, 

1993), political uncertainty (Wagner, 1997), etc., events that can affect several of the state-
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variables.  In addition to the randomly arriving events, there exist controls that if and when 

activated they can affect one or several (or all) state-variables, with the effect of each control 

on the state-variables described by a joint probability distribution.  Thus, the joint impact of 

management´s actions (of value enhancement or information acquisition) on several variables 

or real assets is captured.  We assume independence between controls, and also between 

controls and the state-variables.  We also assume that the rare events and the controls carry 

non-systematic (non-priced) risk only.  We wish to price such real options (with optimal 

activation of controls) for the entity that has monopoly power over these options. 

 We proceed as follows.  First we develop the methodological framework for random 

controls and provide solutions when the state-variables follow GBM.  Then we extend the 

framework to the case of jump-diffusion processes.  To facilitate the exposition of the latter 

case, we first demonstrate how to price multivariate contingent claims with jump-diffusion 

processes in the absence of controls, and then real options in the presence of both optimally 

activated controls, and randomly arriving rare events. 

 

 

II. The Optimization Problem 

 

We will price claims contingent on several stochastic state-variables Si, i = (1,…, N), 

which follow a process of the form 

 

∑+σ+δ−µ=
c

ciciiiiiiii dqkSdZSdtSdS )(    (1a) 

 

under the real probability measure, and  

 

∑+σ+δ−=
c

ciciiiiiii dqkSdZSdtSrdS )(    (1b) 
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under the risk-neutral (see Constantinides, 1978, Harrison and Pliska, 1981, Cox, Ingersoll 

and Ross, 1985) probability measure.  For real options, the dividend yield in the drift 

component is interpreted as in McDonald and Siegel (1984), or alternatively as in Brennan 

(1991).  The dZ term denotes the increment to the standard Wiener process with ii Sσ the 

instantaneous standard deviation of the ith diffusion process.  The counter increment dqc takes 

the value of zero before and one after a control is activated, and is a control variable (unlike 

the case of jump-diffusion where dq is a random variable).  There exist c = (1,…, K) controls 

available, and when the control is activated, it affects each state-variable Si proportionately (Si 

is multiplied by 1 + kic).  The joint distribution of the i = (1,…, N) element vector 1 + kic can 

take many plausible forms (for each control).  Here we assume that it is (multivariate) log-

normal: 

 

ln(1 + kic) ~ ΦΦΦΦc(γic – .5ηic
2, ηic

2, Ρc) 

and 

E[kic] = exp(γic) – 1 

 

with ln denoting the natural logarithm, E[.] the expectations operator, and ΦΦΦΦc(γic – .5ηic
2, ηic

2, 

Ρc) the multivariate normal density function with vector of means γic – .5ηic
2, vector of 

variances ηic
2, and correlation matrix Ρc.  Note the critical assumption that controls carry non-

systematic risk, and are independent of each other and of the diffusion processes.  The real 

claim F is contingent on multiple variables and controls and the cost cst(c) of activating each 

control.  Activation is optimal as the solution to the optimization problem defined by 

equations (2a) - (2d) 

 

          ))](,,...,,([ 1)(,
ccstSStFMaximize Nctc

   (2a) 

subject to: 
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              ∑+σ+δ−=
c

ciciiiiiii dqkSdZSdtSrdS )(    (2b) 

with i = (1,…, N), and Ρ the [NxN] correlation matrix of the dZi terms; 

 

       the joint distributions of controls: ln(1 + kic) ~ ΦΦΦΦc(γic – .5ηic
2, ηic

2, Ρc) (2c) 

with Ρc the [NxN] correlation matrices of the impact of the controls, 

c = (1,…, K), and where E[kic] = exp(γic) – 1; 

 

and the cost cst(c) for each activated control.   (2d) 

 

In addition to the above, suitable boundary conditions (terminal, etc.) define properly the real 

option, which can be of the European or the American type, call or put.  Other boundary 

conditions can define a complex multi-stage (i.e., compound, see Geske, 1979, and Kemna, 

1993) investment opportunity. 

A special case with analytic solution is the European option on the maximum or 

minimum of two assets (see Stulz, 1982) given activation of control(s) at time zero.  The 

solution is isomorphic to Stulz (1982).  The main differences are that the standard deviations 

of the two assets are replaced by the conditional standard deviations, the dividend yields are 

replaced by the conditional dividend yields, and their correlation is replaced by the 

conditional correlation (all conditional on control activation).  For example, Stulz gives the 

European call on the maximum of two assets (which is directly extended to the case of assets 

paying dividend yields δ1, and δ2) and we denote as 

 

ECX(S1, S2, T, δ1, δ2, σ1, σ2, ρ1,2) 

 

with ρ1,2 the instantaneous correlation between dZ1 and dZ2, and T the time to option maturity.  

The same solution algorithm applies conditional on activation of i controls, with the following 

modifications of the input parameters (volatilities and correlations), and making use of the 
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critical assumption that the controls are independent of each other and of the diffusion 

processes: 

 

C
CXE  =       (3) 
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where σ1,2 is the instantaneous covariance of the logarithms of the two assets due to the 

diffusion processes, δ1(c), δ2(c), σ1(c), σ2(c) and ρ1,2(c) are the conditional dividend yields, 

the conditional standard deviations, and the conditional correlation given activation of 

controls.  In the same way we can extend the other models (call on the minimum, and put on 

the maximum or the minimum) in the presence of controls activated at time zero.  For the 

case of N state-variables, the Johnson (1987) option model on several assets would be 

similarly extended conditional on activation of controls at time zero, only all pair-wise 

correlations would require similar adjustments. 

 

For the most general solution to this control problem we will develop a multi-

dimensional Markov-chain numerical solution method that is an extension of the random 

control method, proposed in Martzoukos (1998) in the presence of a single state-variable 

following GBM.  The Markov-chain will augment the Boyle, Evnine and Gibbs (1989) (or 

alternatively any other suitable method for multi-dimensional contingent claims, like Kamrad 

and Ritchken, 1991, and Ekvall, 1996) to value the real option in the case of activated 

controls. 
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One step later and due to the control alone, the joint probability ProbC{n} that the state-

variables S(t) move to S(t + ∆t) with a vertical transition of n = [n1,…, nN] steps, is 

multivariate-normal and is defined as 

 

}{ProbC n  =     (4) 
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since in the Boyle, Evnine, and Gibbs (1989) method that we implement, each movement of 

the logarithm of the state-variable S is either up by σ √(∆t), or down by –σ √(∆t).  But due to 

the geometric Brownian motion alone, the vector S(t) can move on the solution grid to S(t + 

∆t) by either ni = mi = 1 or ni = mi = –1 for each variable i, with probabilities 

 

PD{m1,m2,…,mN} 

 

that exhaust all pairwise combinations of one up (m = 1) or one down (m = –1) move: 

 

PD{1,1,1,…,1}, PD{–1,1,1,…,1}, PD{1,–1,1,…,1}, PD{–1,–1,1,…,1}, etc. 

 

and are given in Boyle, Evnine and Gibbs (1989).  Subsequently, the probabilities due to both 

the control and the diffusion processes equal 

 

}Prob{n  = { }  } {}Prob{P CD∑ −
m

mnm     (5) 



 9 

 

with summation over all possible realizations of vector m. 

 

Let us see the implementation for the more tractable case of N = 2.  Due to the control 

alone, the joint probability ProbC{n} that the state-variables S(t) move on the solution grid to 

S(t + ∆t) by n = [n1, n2] steps, is given by 

 

},{Prob 21C nn  =     (6) 
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and due to the geometric Brownian motion alone, the vector S(t) can move on the solution 

grid to S(t + ∆t) by m = [1,1], m = [1,–1], m = [–1,–1], or m = [–1,1], with all probabilities 

 

PD{m1,m2} = PD{m} 

 

again given from the results in Boyle, Evnine and Gibbs (1989). 

 

The probabilities due to both the diffusion processes and the control are given by 

 

    }Prob{n  = { }∑ −
m

mnm } {}Prob{P CD  =   (7) 

}1 1,{Prob}1,1{P}1 1,{Prob}1,1{P
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For implementation purposes, each probability ProbC{n1, n2} is approximated by 
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      ≅}, {Prob 21C nn      (8) 
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where BIVC is the cumulative bivariate normal with subscript C denoting movement due to 

the control alone.  Any term of the form BIVC{n1, n2, ρ1,2,c} is evaluated (after 

standardization) from the cumulative bivariate standard normal 

 

},, {BIV ,2,121C cnn ρ  =     (9) 
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where the term ρ1,2,c is the correlation of the logarithms of S1 and S2 due to activation of 

control c. 

 

 

Discussion and Numerical Results 

 

Through the analytic solution in eq. (3) for the value of a call option on the maximum 

of two assets, we provide the results shown in Tables 1 and 2.  In the first Table we see 

clearly the striking difference in real option values between the case of absence of control 

(figures in bold) and when a control is present.  Note that the controls used in these examples 

have an expected impact on the underlying assets γc = 0 (pure learning actions). 

 

Insert Tables 1 and 2 about here 
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The simple implementation of real option models can severely underestimate option values 

and thus lead to erroneous decision making (in exercise or purchase/sale of investment 

rights).  In the first table we also see the comparison when the control either affects only one 

of the underlying assets, or it affects both.  Actions affecting simultaneously more than one 

variable (or asset) clearly are much more valuable.  In the second Table we see that in relative 

terms, more value is added when the options are out-of-the-money than when they are in-the-

money.  Control/learning is much more important for investment opportunities that are not 

profitable yet.  In the same Table we also compare the impact of a single or of two controls.  

By neglecting the availability of such actions, we can easily underprice the (out-of-the-

money) real option by a factor of 1/510 (single control) and 1/1073 (two controls) for the 

parameter values chosen. 

 

In Tables 3 and 4 we see the results from the implementation of the numerical scheme 

described by eq. (6) – (9) and defined in eq. (5). 

 

Insert Tables 3 and 4 about here 

 

The accuracy of the numerical scheme is investigated in Table 3 by comparing numerical 

results with those provided by implementation of the analytic solution in eq. (3).  The 

numerical error most often does not exceed the error caused by the lattice of our choice (the 

Boyle, Evnine, and Gibbs, 1989) as shown by the figures in bold.  In general the accuracy 

provided is considered very satisfactory for both shorter (T = 1 year) and longer (T = 5 years) 

maturities.  Table 4 provides a comparison of the option values with a single and with two 

costly controls, where in the second case the second control is timed beyond t = 0 (at t = T/2).  

The values at the top provide the upper bound (when controls are costless) and the values in 

bold at the bottom the lower bound (when controls are nonexistent or extremely costly).  The 

values in the left column could also be calculated with the analytic model, since the single 

control is exercised at time t = 0.  In that case, the optimal option value is the maximum of the 
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value in the absence of control, or the value conditional on control activation minus the cost 

of the control.  For cases like in the second column where several optional actions of value 

enhancement or information acquisition are embedded at time t ≠ 0 there exists no analytic 

solution even for the simple call option on the maximum of two assets.  Actions of 

intervention sequentially spaced in time (and most often costly) are the most generally 

appearing and the numerical solution method is necessary in order to solve for the option 

value under optimal control activation.  Treatment of realistic problems require the valuation 

of complex real options (i.e., Kemna, 1993, and Trigeorgis, 1993), for which, even in the 

absence of controls, no analytic solution would exist anyway.  In conclusion, optimal 

valuation and decision making requires (often numerical) valuation of real options in the 

presence of control/learning actions, where optimal control activation depends on the trade-

off between value added due to control activation, and the control´s cost. 

 

 

III. Extension: Random Controls for Multivariate Jump-Diffusion Processes 

 

We will extend the method of the previous section when the state-variables follow 

discontinuous processes (jump-diffusion).  The random jump arrivals follow Poisson 

distributions with given frequencies, and in the most general case have non-constant jump 

size.  We will retain the assumption that the distribution of the jumps is log-normal.  We will 

also work with the most general assumption that each jump affects all state-variables 

(whereas as a special case some jumps can affect only some of the state-variables).  For 

expositional convenience (and because it has a sufficient interest by itself), we will first treat 

the valuation problem in the absence of controls.  The method is close in spirit to the one 

developed in Amin (1993) (see also Bates 1991) for the case of one-dimensional jump-

diffusion process, drawing on convergence properties studied in Kushner (1977), Kushner and 

DiMasi (1978), and Kushner (1990).  The results are applicable to both financial and real 
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option problems.  Then we will value real investment options in the presence of both random 

controls and randomly arriving jumps (rare events). 

 

Analytic Solutions and Numerical Approximations under the Multi-Dimensional Jump-

Diffusion Process 

 

We will demonstrate the Markov-chain numerical approximation method in the 

absence of control as an extension of Amin (1993), and we will provide analytic solutions for 

options on several assets in the case of jump-diffusion processes.  We assume the existence of 

several classes of jumps affecting each state-variable.  Martzoukos and Trigeorgis (1999) 

have demonstrated the importance of considering multiple classes (representing different 

sources) of randomly arriving rare events, and they have priced such claims for one state-

variable.  In our case and in the presence of several state-variables (this section draws on 

Martzoukos, 2000), we have under the risk-neutral probability measure 

 

∑∑ +σ+λ−δ−=
j

jijiiiii
j

ijjii dqkSdZSdtSkrdS )(   (10) 

 

with i = (1,…, N) state-variables, and j = (1,…, L) classes of randomly arriving jumps that are 

Poisson distributed with yearly frequency λ j.  Jumps of different classes are independent of 

each other and of the GBM.  We retain the assumption that jumps carry non-systematic risk 

only.  We allow jumps to affect in the most general case all state-variables (not necessarily to 

the same extent), having a multivariate log-normal distribution across state-variables: 

 

       ln(1 + kij) ~ ΦΦΦΦj(γij – .5ηij
2, ηij

2, Ρj)    (11) 

with E[kij] = exp(γij) – 1 

and the [NxN] correlation matrices Ρj, j = (1,…, L) 
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Analytic solutions are rare and can be useful to solve special cases of financial option models, 

but most real option situations would require more complex analysis without analytic 

solutions.  We demonstrate the analytic solution for the case of a European option on several 

assets.  In the absence of jumps, Johnson (1987) gives the European option on several assets.  

Here we will demonstrate for simplicity how to extend the Stulz (1982) option model on two 

assets to the case of jump-diffusion, and the Johnson model can be extended similarly.  The 

European call on the maximum in the absence of jumps is denoted 

 

ECX(S1, S2, T, δ1, δ2, σ1, σ2, ρ1,2) 

 

In the presence of jumps, the solution is given by an iterated integral.  Iterations are 

conditional on jump realizations where the vector l = (l1,…,lL) presenting the number of 

realized jumps in each of the L jump classes.  The solution is 
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and due to the independence of the j rare events, 

 

∏










 λ
== λ−

j j

l
jT

L l
T

elll
j

j

!
)(

}{Prob},...,{Prob 1 .        (13b) 

 

The provision of the following Markov-chain probabilities (like in the previous 

section) can accommodate the treatment of the most general problems by augmenting the 

Boyle, Evnine, and Gibbs method.  We use the same definitions with section II, only ProbC is 

replaced with the similarly defined ProbJ but with random (resulting from the jump-diffusion 

assumption) and not with controlled arrival.  The transition probabilities are now given by 

 

}Prob{n  =  

            { }∑ ∑








−==+= ≠=
j m

jjkjk mnmllnl } {}Prob{P0},1Prob{ }{0}PProb{ )J(DD (14a) 

 

with the first term of the RHS implying that the position is attainable through the GBM alone 

(so n is a subset of the possible realizations of m), and when this is not feasible, 
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   }Prob{n  = { }∑ ∑








−== ≠=
j m

jjkjk mnmll } {}Prob{P0},1Prob{ )J(D          (14b) 

 

with the parenthesis in ProbJ(j) signifying that calculations are dependent on the distributional 

characteristics of rare event j.   

 

Like in the previous section for ProbD, in the two-dimensional case we calculate 

 

{ }∑ −
m

j mnm } {}Prob{P )J(D  =    (15) 

}1 1,{Prob}1,1{P}1 1,{Prob}1,1{P
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nn
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and for implementation purposes each probability ProbJ(j){n1, n2} is approximated by 

 

≅}, {Prob 21)J( nnj      (16) 
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jjjj
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with the cumulative bivariate normal calculated after standardization like in section II 

(making use of the distributional characteristics of the random events instead of controls). 

 

Random Controls under Jump-Diffusion Assumptions 
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Now we are ready to combine the control method of section II with our results on 

multi-dimensional jump-diffusion.  The state-variables follow under the risk-neutral measure 

the process 

 

∑∑∑ ++σ+λ−δ−=
c

cici
j

jijiiiii
j

ijjii dqkSdqkSdZSdtSkrdS )(   (17) 

 

where dqj is a random (Poisson distributed) variable, and dqc is a control variable.  Optimal 

activation of controls is a result to the optimization problem defined by equations (18a) –  

(18e) 

 

     ))](,,...,,([ 1)(,
ccstSStFMaximize Nctc

              (18a) 

subject to: 

    ∑∑∑ ++σ+λ−δ−=
c

cici
j

jijiiiii
j

ijjii dqkSdqkSdZSdtSkrdS )(        (18b) 

with i = (1,…, N), and Ρ the [NxN] correlation matrix of the dZi terms; 

 

      the joint distributions of rare events: ln(1 + kij) ~ ΦΦΦΦj(γij – .5ηij
2, ηij

2, Ρj)          (18c) 

with j = (1,…, L), Ρj the [NxN] correlation matrices of the impact of jumps,  

and where E[kij] = exp(γij) – 1; 

 

        the joint distributions of controls: ln(1 + kic) ~ ΦΦΦΦc(γic – .5ηic
2, ηic

2, Ρc)           (18d) 

with c = (1,…, K), Ρc the [NxN] correlation matrices of the impact of controls,  

and where E[kic] = exp(γic) – 1; 

 

and the cost cst(c) for each activated control.             (18e) 
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An analytic solution exists again for the European call option on the maximum of two 

assets in the presence of jump-diffusion and conditional on activated controls.  The solution is 

the iterated integral 

 

CJ,
CXE  =      (19) 
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Similarly we can derive the option on several assets.  

 

In order to solve numerically the most general problem, we now provide the transition 

probabilities for a multivariate jump-diffusion process under activation of a random control 

 

}Prob{n  =      (20) 
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{ } +−= ∑  } {}Prob{P0}Prob{ CD
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with ProbJ(j),C denoting the joint impact of a random event of class j and the activated control.  

The special case with two state-variables is given and approximated again similarly with 

section II.  The definition of  

 

{ }  } {}Prob{P CD∑ −
m

mnm  

 

is exactly like in section II, and similarly we define 

 

{ } } {}Prob{P C),J(D∑ −
m

j mnm . 

 

The joint probabilities resulting from activation of the control in the absence of jumps are 

approximated by 

 

≅}, {Prob 21C nn      (21) 
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The joint probabilities resulting from the simultaneous impact of control activation and a 

jump are approximated by 

 

≅}, {Prob 21C),J( nnj      (23) 
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IV. Conclusions 

 

Martzoukos (1998) proposed the random controls methodology where controlled 

jumps of random size represent acts of management intervention.  Such acts have uncertain 

outcome, the realization of which represents learning.  The method deviates from the 

practically standard approach in the real options literature of waiting-to-see and recognizes 

that a large component of learning comes from deliberate actions, often at a considerable cost.  
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Optimal decision making is the result of a maximization problem where the trade-off between 

the cost of control/learning and the value added by such actions is explicitly taken into 

consideration. 

 In this paper the methodology is generalized from one dealing with the special case of 

actions affecting only one state-variable, to actions that affect simultaneously several.  Thus 

we explicitly recognize that more than one uncertainty is often present.  Furthermore, 

development of management plans about future investments should recognize before 

investment decision is made the flexibility options of retaining alternative courses of action 

(i.e., mutually exclusive investment alternatives).  And after investment is made, such plans 

should recognize the flexibility options of switching modes of operation (i.e., to alternative 

output or input sources).  Overall uncertainty is much more complex than what one state-

variable can capture.  Acts of management intervention (control/learning) is thus directed 

towards more than one state-variable.  Managerial intervention in the presence of several 

flexibility options is in reality very important (a result consistent with the insights in Roberts 

and Weitzman, 1981).  The value of keeping several (real) options alive is also clearly 

recognized by industry, as for example in Exploiting Uncertainty (a recent Business Week, 

1999, article).  Thus, control/learning is more fruitful if directed to more than just one of 

them. 
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TABLE 1 
 

THE VALUE OF AN OPTION ON 2 ASSETS 
IN THE PRESENCE OF A CONTROL 

 
  Impact of a control affecting one or both variables 
  One both 
 ηc = ρc = ------ ρc = -0.50 ρc = 0.00 ρc = 0.50 

14.2306 22.6419 21.0118 18.7334 
10.7376 15.7534 14.6691 13.2443 
7.6796 9.5295 9.0565 8.4993 

 
 

T = 1 
 

0.30 
0.20 
0.10 
------ 6.1887 6.1887 6.1887 6.1887 

16.0208 21.3874 20.1738 18.6078 
13.7583 16.6422 15.9109 15.0455 
12.1042 12.9702 12.7225 12.4585 

 
 

T = 5 
 

0.30 
0.20 
0.10 
------ 11.4727 11.4727 11.4727 11.4727 

 
Notes: Underlying assets S1 = S2 = 100, exercise price X = 100, option maturity T 
= 1 or T = 5 years, with standard deviations σ1 = σ2 = 0.10 and ρ1,2 = 0.25, 
dividend yields δ1 = δ2 = 0.05, and riskless rate r = 0.05.  

Both control volatilities equal ηc, with correlation ρc, both expected 
changes γc = 0.0, exercise time t = 0, and control cost cst = 0.0. 
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TABLE 2 
 

THE VALUE OF AN OPTION ON 2 ASSETS 
IN THE PRESENCE OF CONTROLS 

 
  Impact on in- and out-of-the-money options 
 ηc = S1 = S2 = 75 S1 = S2 = 100 S1 = S2 = 125 

4.8984 21.0118 45.4242 
1.6741 14.6691 38.5876 
0.1782 9.0565 32.6647 

 
 
One control 

0.30 
0.20 
0.10 
------ 0.0096 6.1887 29.5885 

10.2973 29.2667 54.5528 
4.2527 19.8975 44.2100 
0.5628 11.2297 34.9530 

 
 

Two controls 

0.30 
0.20 
0.10 
------ 0.0096 6.1887 29.5885 

 
Notes:  Underlying assets S1 = S2, exercise price X = 100, option maturity T = 
1 years, with standard deviations σ1 = σ2 = 0.10 and ρ1,2 = 0.25, dividend yields 
δ1 = δ2 = 0.05, and riskless rate r = 0.05.  

The volatilities of both controls equal ηc, with correlation ρc = 0.0, 
both expected changes γc = 0.0, exercise times t = 0, and control costs cst = 0.0. 
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TABLE 3 
 

ACCURACY OF THE 2-D MARKOV-CHAIN 
NUMERICAL IMPLEMENTATION 

 
 ANALYTIC NUMERICAL 
T = 1 years   
ηc = 0.30, ρc = -0.50 22.6419 22.6380 
ηc = 0.30, ρc =  0.00 21.0118 21.0098 
ηc = 0.30, ρc =  0.50 18.7334 18.7319 
ηc = 0.20, ρc = -0.50 15.7534 15.7448 
ηc = 0.20, ρc =  0.00 14.6691 14.6637 
ηc = 0.20, ρc =  0.50 13.2443 13.2396 
ηc = 0.10, ρc = -0.50 9.5295 9.5313 
ηc = 0.10, ρc =  0.00 9.0565 9.0584 
ηc = 0.10, ρc =  0.50 8.4993 8.5012 
ηc = ----- (no control) 6.1887 6.2084 
T = 5 years   
ηc = 0.30, ρc = -0.50 21.3874 21.3897 
ηc = 0.30, ρc =  0.00 20.1738 20.1766 
ηc = 0.30, ρc =  0.50 18.6078 18.6114 
ηc = 0.20, ρc = -0.50 16.6422 16.6497 
ηc = 0.20, ρc =  0.00 15.9109 15.9178 
ηc = 0.20, ρc =  0.50 15.0455 15.0534 
ηc = 0.10, ρc = -0.50 12.9702 12.9848 
ηc = 0.10, ρc =  0.00 12.7225 12.7371 
ηc = 0.10, ρc =  0.50 12.4585 12.4734 
ηc = ----- (no control) 11.4727 11.5103 
 
Notes: Underlying assets S1 = S2 = 100, exercise price X = 100, 
option maturity T = 1 or 5 years, with standard deviations σ1 = σ2 
= 0.10 and ρ1,2 = 0.25, dividend yields δ1 = δ2 = 0.05, and riskless 
rate r = 0.05.  

Both control volatilities equal ηc, with correlation ρc, and 
both expected changes γc = 0.0 and control cost cst = 0.0, and 
exercise time at t = 0. 

The 2-D numerical method is an augmentation of Boyle, 
Evnine and Gibbs (1989) (n = 25 steps), making sure that the 
Markov-Chain probabilities sum (approximately) to unity. 
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TABLE 4 
 

THE (NUMERICAL) 2-D MARKOV-CHAIN  
WITH COSTLY CONTROLS 

 
 One control Two controls 
Control cost cst = 0.0   
ρc = -0.50 15.7448 21.2681 
ρc =  0.00 14.6637 19.7628 
ρc =  0.50 13.2396 17.6196 
Control cost cst = 3.0   
ρc = -0.50 12.7448 15.7162 
ρc =  0.00 11.6637 14.1864 
ρc =  0.50 10.2396 12.0911 
Control cost cst = 7.0   
ρc = -0.50 8.7448 9.4680 
ρc =  0.00 7.6637 8.0810 
ρc =  0.50 6.2396 6.6482 
No control: 
(Control cost cst = ∞)   

6.2084 6.2084 

 
Notes: Underlying assets S1 = S2, X = 100, option maturity T = 1 
years, with standard deviations σ1 = σ2 = 0.10 and ρ1,2 = 0.25, 
dividend yields δ1 = δ2 = 0.05, and riskless rate r = 0.05.  

Controls have both volatilities ηc = 0.20, correlation ρc, 
control cost cst, and timing of controls is at t = 0 for a single 
control, and at t = 0 and t = T/2 for the case of two controls. 

The 2-D method is an augmentation of Boyle, Evnine and 
Gibbs (1989) (n = 25 steps), making sure that the Markov-Chain 
probabilities sum (approximately) to unity. 
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