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Resolving a Real Options Paradox with Incomplete Information: After All, Why Learn? 

 

 

 

 

Abstract 

 

 

In this paper we discuss a real options paradox of managerial intervention directed towards 

learning and information acquisition: since options are in general increasing functions of 

volatility whereas learning reduces uncertainty, why would we want to learn?  Examining real 

options with (costly) learning and path-dependency, we show that conditioning of information 

and optimal timing of learning leads to superior decision-making and enhances real option value. 

 



Introduction 

 

Most of the real options literature (see Dixit and Pindyck, 1994, and Trigeorgis, 1996) 

has examined the value of flexibility in investment and operating decisions, but little has been 

written about management´s ability to intervene in order to change strategy or acquire 

information (learn).  Majd and Pindyck (1989), and Pennings and Lint (1997) examine real 

options with passive learning, while Childs, et al. (1999), and Epstein, et al. (1999) use a filtering 

approach towards learning.  The importance of learning actions like exploration, experimentation, 

and R&D was recognized early on in the economics literature (e.g., Roberts and Weitzman, 

1981).  Compound option models (Geske, 1977, Carr, 1988, and Paddock, Siegel, and Smith, 

1988) capture some form of learning as the result of observing the evolution of a stochastic 

variable. Sundaresan (2000) recently emphasizes the need for adding an incomplete information 

framework to real options valuation problems.   

Although many variables, like expected demand or price for a new product, are typically 

treated as observable (deterministic or stochastic), in many situations it is more realistic to 

assume that they are simply subjective estimates of quantities that will be actually observed or 

realized later.  Our earlier estimates can thus change in unpredictable ways.  Ex ante, their change 

is a random variable with (presumably) a known probability distribution.  These are often price-

related variables so in order to avoid negative values, it can be assumed that the relative change 

(one plus) has a (discrete or continuous) distribution that precludes negative values.  Abraham 

and Taylor (1993) consider jumps at known times to capture additional uncertainty induced in 

option pricing due to foreseeable announcement events. Martzoukos (1998) examines real options 

with controlled jumps of random size (random controls) to model intervention of management as 

intentional actions with uncertain outcome.  He assumes that such actions are independent of each 

other.  Under incomplete information, costly control actions can improve estimates about 

important variables or parameters, either by eliminating or by reducing uncertainty.   



This paper seeks to resolve an apparent paradox in real options valuation under 

incomplete information: Since (optional) learning actions intended to improve estimates actually 

reduce uncertainty, whereas option values are in general indecreasing functions of uncertainty, 

why would the decision-maker want to exercise the uncertainty-reducing learning options?  By 

introducing a model of learning with path-dependency, we investigate the optimal timing of 

actions of information acquisition that result in reduction of uncertainty in order to enhance real 

option value. 

 

If uncertainty is fully resolved, exercise of an investment option on stochastic asset S* 

with exercise cost X yields S* – X.  If a learning action has not been taken before the investment 

decision is made, resolution of uncertainty (learning) would occur ex post. Ex ante, the 

investment decision must be made based solely on expected (instead of actual) outcomes, in 

which case exercise of the real option is expected to provide E[S*] – X. For tractability, we 

assume that E[S*] follows a geometric Brownian motion, just like S*.  Consider for example the 

case where S* represents the product of two variables, an observable stochastic variable (e.g., 

price), and an unobservable constant (quantity).  The learning action seeks to reveal the true value 

of the unobservable variable (quantity).  Before we introduce our continuous-time model, 

consider a simple one-period discrete example involving a (European) option to invest that 

expires next period.  We can activate a learning action that will reveal the true value of S* at time 

t = 0 at a cost; or we can wait until maturity of this real option, and if E[S*] > X we invest and 

learn about the true value of S* ex post, else we abandon the investment opportunity.  For 

expositional simplicity (see Exhibit 1) we assume a discrete set of outcomes: the realized value of 

S* will differ from E[S*] by giving a higher value (an optimistic evaluation), a similar one (a 

most likely evaluation), or a lower one (a pessimistic evaluation) with given probabilities.   

[Enter Exhibit 1 about here.] 



If management does not take a learning action before option exercise, information will be 

revealed ex post, resulting in an exercise value for the option different from the expected one.  

Option exercise might thus prove ex post sub-optimal, as it might result in negative cash flows if 

the realization of S* is below X.  Similarly, unexercised might also lead to a loss of value, if the 

true value of S* is above X.  There in fact exist two learning actions, one at time zero, and one at 

maturity, which are path-dependent. If learning is implemented at time zero, the second 

opportunity to learn ceases to exist since information has already been revealed that enables 

subsequent decisions to be made conditioning on the true information, otherwise decisions are 

made using expectations of uncertain payoffs. 

 

In the following we introduce our continuous-time model with learning and path-

dependency. The option is contingent on the state-variable S = E[S*] that follows a geometric 

Brownian motion process. The outcomes of information revelation are draw from a continuous 

distribution.  In the presence of costly learning, there exists an upper and a lower critical 

boundary within which it is optimal to exercise the (optional) learning action. Outside this range, 

it is not optimal to pay a cost to learn.  The investment is already either too good to worry about 

possibly lower realized cash flows, or too bad to invest a considerable amount in order to learn 

more. If learning were costless we would always want to learn early in order to make more 

informed investment decisions. But if the learning action is too expensive, it may be better to wait 

and learn ex post. The trade-off between the (ex ante) value added by the learning actions in the 

form of more informed conditional decisions and the learning cost determines optimal (timing of) 

control activation.   

In the next section we present a basic modeling of real option valuation with embedded 

learning actions that allows for an analytic solution. Then we introduce multi-stage learning 

models where more complicated forms of path-dependency are handled with computationally-

intensive numerical methods. The last section concludes. 



A Basic (Analytic) Model with Learning Actions  

 

We assume that the underlying asset (project) value, S, subject to i optional (and typically costly) 

learning controls that reveal information, follows a stochastic process of the form: 
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where µ is the instantaneous expected return (drift) and σ the instantaneous standard deviation, 

dZ is an increment of a standard Wiener process, and dqi is a jump counter for managerial 

activation of control i -- a control (not a random) variable. 

 

Under risk-neutral valuation, the asset value S (e.g., see Constantinides, 1978) follows the 

process 
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where the risk-adjusted drift µ* = µ – RP equals the real drift minus a risk premium RP (e.g., 

determined from an intertemporal capital asset pricing model, as in Merton, 1973).  We do not 

need to invoke the replication and continuous-trading arguments of Black and Scholes (1973).   

Alternatively, µ* = r – δ, where r is the riskless rate of interest, while the parameter δ represents 

any form of a “dividend yield” (e.g., in McDonald and Siegel, 1984, δ is a deviation from the 

equilibrium required rate of return, while in Brennan, 1991, δ is a convenience yield).  As in 

Merton (1976), we assume the jump (control) risk to be diversifiable (and hence not priced).   



For each control i, we assume that the distribution of its size, 1 + k i, is log-normal, i.e., 

ln(1 + k i) ~ N(γi – .5σCi
2, σCi

2), with N(.,.) denoting the normal density function with mean γi – 

.5σCi
2 and variance σCi

2, and E[k i] ≡ ik  = exp(γi) – 1.  The control outcome is assumed 

independent of the Brownian motion -- although in a more general setting it can be dependent on 

time and/or the value of S.  Practically we can assume any plausible form.  Stochastic differential 

equation (1a) can alternatively be expressed in integral form as: 
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Given our assumptions and conditional on control activation by management,  

[S* | activation of control i] = E[S*](1 + k i) = S(1 + k i),  

making the results from the control action random, and  

E[S* | activation of control i] = E[S*](1 + ik ) = S(1 + ik ). 

In the special case of a pure learning control (with zero expected change in value, so ik  = 0)  

E[S* | activation of control i] = S . 

 

Useful insights can be gained if we examine the following (simple) path-dependency.  

Suppose that a single learning control can be activated either at time t = 0 at a cost C or at time T 

(the option maturity) without any (extra) cost -- beyond the exercise price X of the option. The 

controlled claim (investment opportunity value) F must satisfy the following optimization 

problem: 
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ln(1 + k) is normally distributed with mean: γ – .5σC
2, and variance: σC

2, 

E[k] ≡ k  = exp(γ) – 1. 

 

Assuming independence between the control and the increment dZ of the standard Wiener 

process, the conditional solution to the European call option is given by: 

 

        c(S, X, T, σ, δ, r; γ, σC) = e – r T ]control  theof activation|)0,*[max( XSE T − .   (4) 

 

The conditional risk-neutral expectation E[.] (derived along the lines of the Black-Scholes model, 

but conditional on activation of a single control at t = 0) is: 

 E[max(S*T  – X, 0) | activation of the control at t = 0] = )()( 21
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where N(d) denotes the cumulative standard normal density evaluated at d. The value of a 

conditional European put option can be similarly shown.  The value of this option conditional on 

control activation at t = T is the same as the unconditional Black-Scholes European option, since 

at maturity the option is exercised according to the estimated value S = E[S*].  

 

Given the rather simple structure we have imposed so far (a single learning action to be 

activated at either t = 0 or at T), the (optimal) value of this real option is 

 



    Max[Conditional Value (Learning Activation at t = 0) – C,     (6) 

Unconditional Value (Costless learning at t = T)]. 

 

Numerical Results and Discussion 

 

Table 1 shows the results and accuracy of this analytic model.  For comparison purposes, we 

provide results of a standard numerical (binomial lattice) scheme with N = 200 steps.  Assuming a 

costless learning control (C = 0 and k ) we compare real option values for in-the-money, at-the-

money, and out-of-the-money options.   

 

[enter Table 1 about here] 

 

If learning is costless, control is always exercised at t = 0.  The extent of learning potential 

(captured through the value of σC) is a very significant determinant of option value.  Real options 

with embedded learning actions are far more valuable than options without any learning potential 

(σC = 0). 

 

Exhibit 2 illustrates intuition with costly learning.  In general there exist an upper SH and a lower 

SL critical asset threshold defining a zone within which it pays to activate the learning action. 

 

[enter Exhibit 2 about here] 

 

Table 2 presents the lower and upper critical asset (project) value thresholds for various values of 

the learning cost, time to maturity, and learning control volatility.  Lower volatility resulting from 

activation of the learning action implies less uncertainty about the true outcome and has the effect 



of narrowing the range when it is optimal to pay a cost to learn.  Similarly, increasing learning 

cost decreases this range, and beyond a point it eliminates it altogether, rendering activation of 

the learning action a sub-optimal choice. 

 

[Enter Table 2 here] 

 

 

Multi-Stage Learning 
 

In the previous section we discussed a model (special case) with an analytic solution -- 

being a function of elements isomorphic to the standard Black and Scholes model. This was 

possible since learning about the underlying (European) option could occur either at t = 0 or (ex 

post) at t = T. With more general assumptions about learning, for example when we can also learn 

at intermediate times in-between zero and T, or when alternative sequences of learning actions 

exist that are described by different sets of probability distributions, an analytic solution may in 

general not be feasible. Two complications arise. One is that numerical methods are needed.  The 

other is that (costly) activation of learning actions induces path-dependency, which should 

explicitly be taken into account. Martzoukos (1998) assumed independent controls so that path-

dependency did not need to be explicitly taken into account. In the following we implement a 

lattice-based recursive forward-backward looking numerical method in order to solve the more 

general optimization problem 
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ln(1 + k i) is normally distributed with mean: γi – .5σCi
2, and variance: σCi

2, 

E[k i] ≡ ik  = exp(γi) – 1. 

 

In the above, adequate conditions must be provided so that the exact control-induced dependency 

between stages is properly specified.   

 

The general optimization problem in (7) must be solved numerically. Consider an 

investment option with time-to-maturity T solved on a lattice scheme with N steps of ∆t = T/N 

length. In the previous section we had a single decision-node at t = 0, since learning at t = T (if 

information was not completely revealed earlier) would occur without any further action.  In this 

section we consider multi-stage problems, where decision-nodes appear several times (NS = 1 – 4 

in our examples) before T. At any of these nodes, learning actions can be activated.  In order to 

determine the optimal activation of these learning controls, their exact interrelation must be 

specified, which actually determines the problem under consideration.  Problems of this type are 

inherently path-dependent.  Activation of learning actions (often at a cost) is conceptually similar 

to the hysteresis-inducing costly switching of modes of operation treated in Brennan and 

Schwartz (1985) and Dixit (1989). The main difference is that we allow for a discrete number 

(instead of a continuum) of actions, at predetermined points in time. The structure is flexible 

enough to allow for early exercise at any of these nodes (semi-American or Bermudan feature).  

Between stages the valuation lattice is drawn on the unconditional volatility 
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if no learning has been activated, and on the conditional volatility  
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if such i learning actions have been activated, with 
SN

N
 being the number of lattice steps per 

stage. Path-dependency requires that all combinations of sub-problems be analyzed, so that each 

combination of sub-lattices is distinctly created and used for the pricing of the option. This is 

achieved through recursive forward-backward looking implementation of the lattice. Option 

pricing in this context is similar to a discrete optimization problem where the optimum is found 

through exhaustive search.  

 

In the following we distinguish between fully-revealing actions, where all uncertainty is 

resolved, and partly-revealing actions, where only part of the uncertainty can be resolved at a 

time.  In the latter case we define the informativeness of the learning control to be the percent of 

total uncertainty that is resolved by a single partly-revealing action. Problems that can be solved 

with this numerical methodology include the following: A) The single learning action is 

permissible not only at t = 0, but at several discrete intervals before option maturity -- effectively 

we solve for the optimal timing of the learning action. B) The single learning action can be 

activated in its entirety, or sequentially in partly-revealing actions.  Very likely, such actions have 

a different cost structure than the single fully-revealing action. To solve this option problem we 

effectively optimize across two attributes: (a) we solve for the optimal sequence of partial-

learning actions, while at the same time determining whether it is optimal to activate partial 

learning actions; or (b) we exercise a single fully-revealing action (in any of the stages where this 

is permissible). C) There are several mutually exclusive alternatives of sequences of partly-

revealing actions (potentially including the fully-revealing one as a special case) with different 

cost structures. D) If learning is very costly, we can instead consider only single partly-revealing 



mutually exclusive alternatives (instead of a sequence). The remaining uncertainty will be 

resolved ex post.  Effectively we must determine the optimal trade-off between the magnitudes of 

(partial) learning and their cost, most likely including the fully-revealing alternative (if one exists) 

in the admissible set of actions. If several stages are involved, we also solve for the optimal 

timing of the best alternative. In this type of problem we can consider either a continuum or a 

discrete set of alternative actions. If these actions can only be activated at t = 0, an analytic 

solution is feasible, as in the previous section. E) Other actions with more complicated forms of 

path-dependency can be included, like different sequences of learning actions (with subsets of 

actions of varying informativeness and cost structures, etc.). 

 

[Enter Tables 3A and 3B about here.] 

 

In Tables 3A and 3B we provide numerical results for the Multi-Stage option. The case 

with zero periods (NS = 0) of learning implies that learning can only occur ex post. Cases with 

one, two, or four periods (stages) can involve active learning at (t = 0), at (t = 0, t = T/2), at (t = 0, 

t = T/3, t = T/2, t = 2T/3), and of course ex post if information remains to be revealed.  In Table 

3A we allow for optimal timing of a single fully-revealing and costly action.  Optimal timing 

enhances flexibility and option value as more stages are added (and extrapolation methods like 

Richardson extrapolation can approximate the continuous limit, as in Geske, 1977). In Table 3B 

we observe similar results when instead of a single fully-revealing learning action we allow for 

two (identical) partly-revealing ones. Each has 50% informativeness (and one half the cost) so 

that if both are activated the learning effectiveness (and total cost) are the same with the base-case 

of a single fully-revealing action.  First we only permit activation of one partly-revealing action at 

a time. Then (figures in parenthesis) we permit activation of both partial learning actions 

simultaneously. This is equivalent to optimization for the best of two mutually exclusive 



alternatives, the single fully-revealing action or the sequence of two partly-revealing ones (with 

optimal timing in both cases).  In all cases more flexibility can add considerable value. 

 

[enter Table 4 about here] 

 

In Table 4 we illustrate the trade-offs when mutually exclusive learning actions exist with varying 

levels of informativeness and cost. We assume that σC = 0.50 represents the fully-revealing 

action.  In the first column we present the real option values with zero learning costs (C = 

0/0/0/0). In the second column, increasing the level of informativeness is at a decreasing marginal 

cost (economies of scale in information acquisition).  In the third column, increasing the level of 

informativeness is at an increasing marginal cost (diseconomies of scale in information 

acquisition).  In the last column, at first there are economies of scale and then diseconomies of 

scale. For simplicity, all actions are at time zero only, with any remaining uncertainty to be 

resolved ex post. We optimize across alternative actions considering a discrete set of mutually 

exclusive alternatives using the analytic model.  Asterisked values represent the optimal choice, 

which clearly enhances investment (option) value. The reported results can easily be extended to 

the multi-stage setting with optimal timing of the best action. 

 

In Table 5 we present the numerical results for the important case of a growth 

(compound-type) investment option with learning (Kemna, 1993). The method is a more 

sophisticated version of the example presented in the classic textbook by Brealey and Myers 

(2000). The decision-maker can invest C in a first (pilot) investment and get the benefits SC, plus 

an option to make the larger scale investment on S by paying capital cost X. Like before, the first 

investment will improve information about S. To keep a low level of dimensionality, we assume 

that SC is a constant fraction of S.  If the pilot investment is not undertaken before T, it can be 

undertaken at T together with the final investment. At time t = 0, and without regard to its 



learning potential, the pilot project is an investment option (exactly at-the-money), with SC = C, 

and so is the option on the larger scale investment, with S = X. If we account explicitly for 

learning, the potential for information acquisition and for optimal timing of learning increases 

investment value tremendously (from a range of 5.145 – 6.368 when σC = 0.00, to a range of 

18.573 – 18.616 when σC = 0.50). 

 

[Insert Table 5 about here.] 

 

 

Conclusions 

 

The present paper addressed and resolved a real options paradox, namely why would 

management want to resolve (reduce) uncertainty of real (investment) opportunities, given that 

options in general are non-decreasing functions of volatility. By using a real options framework 

with incomplete information and costly learning actions that induce path-dependency, we showed 

that timing of information acquisition is essential. Optimal timing leads to reduction of the cost of 

potential mistakes and maximizes the value of investment opportunities. This is achieved through 

improving management´s quality of information that leads to superior decision-making. Since 

information acquisition is in general costly, management effectively seeks the optimal trade-off 

between the quality of learning, and the cost of learning. Optimal timing of learning must take 

this into account.    

Learning actions can be treated as controlled jumps of random size whose realization is a 

random variable with a probability distribution known from past data, or elicited through expert 

opinions (for a Bayesian approach with elicitation and combination of subjective expert opinions, 

see Lindley and Singpurwalla, 1986, and Cooke, 1991).  



The paper discussed various cases of the problem formulation, utilizing an analytic 

solution as well as a computationally intensive (forward-backward looking) numerical method to 

solve for the general problem with path-dependency. The analytic solution holds for the case of a 

single learning action that can be taken only at time zero. The results reveal that costly learning 

will occur for options that are neither deep out-of-the-money, nor deep in-the-money. Activation 

of learning actions is optimal within a range defined between two critical thresholds. 

Complex multi-stage problems were discussed where the path-dependency induced by 

the exercise of costly learning actions was treated with a computationally intensive numerical 

approach. The general problem formulation allows the solution of realistic problems where not 

only optimal timing of a single learning action is considered, but also the optimal choice of 

alternative actions with different degrees of learning effectiveness and flexibility. The numerical 

results clearly demonstrate the value added of learning actions and of flexibility in learning.  

Since learning actions constitute an inherent part of the managerial toolkit, the classical real 

options approach that neglects their presence underestimates the value of real options and can 

lead to inferior decision-making.  
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Table 1 
 

Value of Real Option with Costless Learning (Numerical/Analytic) 
 
  S = 75.00 S = 100.00 S = 125.00 

σC = 0.00 0.005/0.005 3.789/3.793 23.828/23.828 

σC = 0.10 0.090/0.090 5.356/5.362 24.147/24.148 

σC = 0.20 0.856/0.859 8.457/8.468 25.755/25.762 

 

T = 1 

σC = 0.50 7.361/7.379 19.119/19.142 35.392/35.402 

σC = 0.00 0.085/0.086 5.094/5.101 22.969/22.971 

σC = 0.10 0.271/0.271 6.237/6.245 23.434/23.437 

σC = 0.20 1.130/1.129 8.809/8.820 25.054/25.049 

 

T = 2 

σC = 0.50 7.262/7.271 18.525/18.548 34.002/34.020 

σC = 0.00 0.701/0.704 6.924/6.933 21.087/21.092 

σC = 0.10 0.972/0.972 7.582/7.592 21.564/21.560 

σC = 0.20 1.810/1.809 9.274/9.286 22.914/22.911 

 

T = 5  

σC = 0.50 6.897/6.889 16.786/16.807 30.140/30.145 

 
Note: For the underlying asset S = 100.0, r = δ = 0.05, and σ = 0.10, for the 

option X = 100.0, and for the single learning control k = 0.0, and cost C = 0.00.  
The numerical (lattice) implementation uses N = 200 steps. 
 



Table 2 

Critical Asset Values (Upper/Lower) with Costly Learning Control 
 
 Learning cost C (at t = 0) 

 0.2 0.5 1.0 2.0 5.0 

T = 1.0  

σC = 0.10 128.946 

78.750 

120.865 

83.971 

112.842 

89.905 

----- 

----- 

----- 

----- 

σC = 0.20 157.980 

65.688 

145.316 

71.193 

135.287 

76.230 

124.438 

82.564 

----- 

----- 

σC = 0.50 350.681 

34.926 

294.349 

41.126 

254.142 

47.051 

251.813 

54.472 

167.611 

67.683 

T = 2.0  

σC = 0.10 135.914 

75.445 

123.947 

82.703 

109.895 

93.257 

----- 

----- 

----- 

----- 

σC = 0.20 165.939 

63.032 

151.287 

68.937 

139.451 

74.603 

125.861 

82.443 

----- 

----- 

σC = 0.50 357.822 

34.484 

299.113 

40.749 

257.334 

46.757 

217.616 

54.306 

167.834 

67.839 

T = 5.0  

σC = 0.10 147.718 

71.521 

122.544 

86.202 

----- 

----- 

----- 

----- 

----- 

----- 

σC = 0.20 186.363 

57.660 

164.455 

65.226 

145.806 

73.467 

120.369 

88.872 

----- 

----- 

σC = 0.50 378.416 

33.336 

312.475 

39.803 

265.955 

46.076 

222.055 

54.096 

166.695 

69.638 

 
Note: For the underlying asset S = 100.0, r = δ = 0.05, and σ = 0.10, for the 

option X = 100.0, and for the single learning control k = 0.0.  Critical values are 
calculated using a Newton-Raphson scheme and the analytic model. 
 
 
 
 



Table 3A 

Multi-Stage Real Option with Learning (Numerical) 
 

Optimal Timing of a Single Fully-Revealing Learning Action 

  C = 0.50 C = 1.00 C = 2.00 C = 5.00 

σC = 0.00 NS = 0 5.094 5.094 5.094 5.094 

NS = 1 5.737 5.237 5.094 5.094 

NS = 2 5.784 5.381 5.094 5.094 

 

σC = 0.10 

NS = 4 5.831 5.495 5.096 5.094 

NS = 1 8.309 7.809 6.809 5.094 

NS = 2 8.349 7.875 6.942 5.094 

 

σC = 0.20 

NS = 4 8.361 7.905 7.041 5.205 

NS = 1 18.025 17.525 16.525 13.525 

NS = 2 18.084 17.608 16.657 13.804 

 

σC = 0.50 

NS = 4 18.108 17.644 16.716 13.934 

 
Note: For the underlying asset S = 100.0, r = δ = 0.05, and σ = 0.10, for the 

option X = 100.0, and T = 2.00, and for the learning controls k = 0.0. For the 
numerical (lattice) we used N = 200 steps. 
 
 



Table 3B 

Multi-Stage Real Option with Costly Learning (Numerical) 
 

Optimal Timing of a Sequence of Two Partly-Revealing Learning Actions 
One permitted at a time (both permitted at a time) 

  C1 = C2 = 0.25 C1 = C2 = 0.50 C1 = C2 = 1.00 C1 = C2 = 2.50 

σC1 = σC2 = 0 NS = 0 5.094 5.094 5.094 5.094 

NS = 1 (5.737)  5.444 (5.237)  5.194 (5.094)  5.094 (5.094)  5.094 

NS = 2 (5.784)  5.768 (5.381)  5.341 (5.094)  5.094 (5.094)  5.094 

 

σC1 = 0.0707 

 σC2 = 0.0707 NS = 4 (5.836)  5.827 (5.501) 5.478 (5.123)  5.123 (5.094)  5.094 

NS = 1 (8.309)  6.948 (7.809)  6.698 (6.809)  6.198 (5.094)  5.094 

NS = 2 (8.349)  8.331 (7.875)  7.870 (6.995)  6.995 (5.181)  5.181 

 

σC1 = 0.1414 

 σC2 = 0.1414 NS = 4 (8.377)  8.375 (7.949)  7.949 (7.152)  7.149 (5.389)  5.389 

NS = 1 (18.025)  13.394 (17.525)  13.144 (16.525)  12.644 (13.525)  11.144 

NS = 2 (18.084)  18.041 (17.608)  17.570 (16.657)  16.650 (14.050)  14.050 

 

σC1 = 0.3535 

 σC2 = 0.3535 NS = 4 (18.114)  18.095 (17.656)  17.644 (16.769)  16.766 (14.287)  14.287 

 
Note: For the underlying asset S = 100.0, r = δ = 0.05, and σ = 0.10, for the option X = 100.0, 

and T = 2.00, and for the learning controls k = 0.0. For the numerical (lattice) we used N = 200 
steps. 
 For the case of partly-revealing actions, the combined standard deviation if both are 
activated equals 0.10 in the first, 0.20 in the second, and 0.50 in the third case, so that the 
combined result is equivalent to that of a fully-revealing action for comparison purposes with a 
single action.  In parenthesis we provide values when we permit both partly-revealing actions to 
also occur simultaneously (equivalent to fully-revealing).   
  



Table 4 

Mutually Exclusive Alternative Learning Actions with Informativeness  

Cost-benefit Trade -offs and Scale (Diss)economies 

S = 100 

X = 100 

 

C = 0/0/0/0 

 

C = 0/1.5/2/3 

 

C = 0/1/4/15 

 

C = 0/2/3/15 

σC = 0.00 5.101 5.101 5.101 5.101 

σC = 0.10 6.245 4.745 *5.245 4.245 

σC = 0.20 8.820 6.820 4.820 *5.820 

σC = 0.50 *18.548 *15.548 3.548 3.548 

     

S = 125 

X = 100 

 

C = 0/0/0/0 

 

C = 0/1.5/2/3 

 

C = 0/0.4/2.5/12 

 

C = 0/1.5/2/12 

σC = 0.00 22.971 22.971 22.971 22.971 

σC = 0.10 23.437 21.937 *23.037 21.937 

σC = 0.20 25.049 23.049 22.549 *23.049 

σC = 0.50 *34.020 *31.020 22.020 22.020 

 
Note: For the underlying asset S = 100.0, r = δ = 0.05, and σ = 0.10, for the option X = 

100.0, and T = 2.00, and for the learning controls k = 0.0. The fully-revealing action is 
defined by σC = 0.50.  All other controls have partial only revealing potential. Asterisked 
values represent the optimal choice. 
 



Table 5 

Multi-Stage Real Option with Growth and Learning (Numerical) 

Optimal Timing of Growth Investment with Fully-Revealing Learning Potential 

  C = 1.0, 

SC = (1%)S 

C = 5.0, 

SC = (5%)S 

C = 10.0, 

SC = (10%)S 

C = 25.0, 

SC = (25%)S 

σC = 0.00 NS = 0 5.145 5.349 5.604 6.368 

NS = 1 6.237 6.237 6.237 6.368 

NS = 2 6.248 6.280 6.371 6.852 

 

σC = 0.10 

 NS = 4 6.256 6.333 6.478 7.039 

NS = 1 8.809 8.809 8.809 8.809 

NS = 2 8.825 8.827 8.842 9.009 

 

σC = 0.20 

 NS = 4 8.825 11.100 8.897 9.210 

NS = 1 18.525 18.525 18.525 18.525 

NS = 2 18.560 18.560 18.560 18.561 

 

σC = 0.50 

 NS = 4 18.573 26.313 18.587 18.618 

 
Note: For the underlying asset S = 100.0, r = δ = 0.05, and σ = 0.10, for the option X = 100.0, 

and T = 2.00, and for the learning controls k  = 0.0. For the numerical (lattice) we used N = 
200 steps. 



Exhibit 1 
 

Information Revelation and the Cost of a Mistake 
 
 
 

   Information Revelation (at t = 0, or t = T) 
 
                                          {(Optimistic S*) = E[S*](1+ko)} with probability Po and ko>0 
 
 
                  E[S*]               {(Most likely S*) = E[S*]} with probability Pm 
 
 
                                          {(Pessimistic S*) = E[S*](1+kp)} with probability Pp and kp<0 
 
 
 

    Potential Cost of a Mistake with Ex Post Learning (t = T) 
Real Option is Exercised if E[S*] > X, but: 

If (Pessimistic S*) < X, there is Probability Pp of a Realized Loss = (Pessimistic S*) – X  

 

Real Option is not Exercised if E[S*] ≤ X, but: 

If (Optimistic S*) > X, there is Probability Po of an Opportunity Cost = (Optimistic S*) – X 

 

 



Exhibit 2 
 

Optimal Activation and Optimal Timing of Costly Learning 
 
 
 
 

            at t = 0                at t = T 
 
        CRITICAL               OPTIMAL      CRITICAL                     OPTIMAL 
   ASSET VALUE           DECISION                  ASSET VALUE                 DECISION 
 
 
        SH < S                   NO ACTIVATION 
                 OF LEARNING           INVEST 
       X < S  (w/ ACTIVATION  
                 if not activated before) 
          
      SL ≤ S ≤ SH                 ACTIVATION 
 
       S ≤ X      ABANDON 
 
        S < SL                   NO ACTIVATION  
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