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The Tail that Wags the Dog:
Integrating Credit Risk
in Asset Portfolios

NORBERT J. JOBST AND STAVROS A. ZENIOS

redit risky securities and most of
their derivatives are characterized
by a large chance of positive returns
and a very small probability of large
investment losses. The distribution of price

rerurns of these instruments 1s asymmetric and
highly skewed, exhibiting very flat tails on the
downside. Thar investors are compensated for
assuming the low-probabiliry risk of losses 15
evidenced by the roral return of corporate
bond indices versus the ULS. Treasury market,
as summarized in Exhibit 1 for the 11.5-year
period January 1990—]June 2001 .

On a duranon-adjusted basis the Merrill
Lynch Eurodollar index, for instance, reahzed an
annuahzed return of 9.33% with a standard devi-
ation of 4.48% aver the period December 1985
to March 2001. The Eurodollar index outper
formed the U.S. Treasury index during this
period, which realized duration adjusted returns
of 8.74% with a standard deviation of 4.73%.

We might well ask whether the return of
the credit risky portfolio adequartely compen-
sates for the low-probability large losses events.
Given the proliferaton of corporare bond
1ssues, the constant stream of Innovations in
credit derivatives, and their increased use in the
asset portfolios ol mstitutions, 1t is appropri-
ate that credit risk pricing maodels receive
widespread attention; see, [or instance, Saun-
ders [1999] and Schonbucher [2000]. Costly
lower-tail outcomes also have an impact on the
practice of enterprise risk management as
pointed our by Stulz [1996]. Models for inte-
erated risk management in the context of
credit risky sccurities are few, however.

We demonstrate the significance of the
tails n shaping the risk profile of credit asset
portfolios. We start with the obvious: namely,
that properly simulated credit events result in risk
profiles with flat tails on downside risk (i.e.,
losses) and lirmited upside potential (i.e., gains).
We develop from this more subtle and impor-
tant observations:

* Losses are probabilistic events, and with-
out adequate accuracy the low-proba-
bility events may be missed. We
demonstrate this in the seenion entitled
“Where is the Tail?.”

« Recognizing that these low-probability
events can lead to different optimal port-
folios i1s shown 1n the section enttled
“lail Effects on Efficient Frontiers.”

* Even so, standard risk measures do not
adequately penalize the low-probability
events, The resulting portfolios might be
efficient with respect to the standard met-
ric, yvet unacceptable to portfolio man-
agers because ol the probability of
achieving substantial losses. Iifferent risk
measures such as conditional ValR should
therefore be used. Relevant models are
introduced in the section enatled “Opri-
mizing the Right Risk Metric.”

» With appropriate modeling, long-tcrm
performance goals can be met without
suffering catastrophic blows from the
tails in the short run. This 1s demon-
strated 1n the section, “Long-lerm Per-
Sformance with Short-Term Tails.”
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EXHIBIT 1
Total Return of Broad Market Indexes

January 1990-June 2001
Index Return (%)
‘Merrill Lynch Eurodollar 139.68
U.S. Treasury L3 A%
LI.S. Agency Master (AAA) 142.39

U.S. Corporate Domestic Bonds 156.34

These observations are supported by empirical anal-
ysis carried out using the simulation models developed
recently by Jobst and Zenios [2001]. In our numerical
experiments we simulate 500 economic scenarios and 5,000
credit events, for a total ot 2.5 million simulation runs. Port-
folio models are optimized on samples of 5,000 to 10,000
scenarios, drawn from the 2.5 million simulations.’

WHERE IS THE TAIL?

The causes of loss due to credir assets are many and
complex. Credit risk can be described as the changing
expectations of an obligator’ ability or willingness to ful-
fill its obligations on a certain date or at any time bevond.
Losses may result from a default or a change in markert
alue due to credit quality migration. In general, credit
risk for a single instrument may be decomposed mto
default risk, migration risk, and sccurity-specitic risks

that cause idiosyncratic spread changes. Default 1s the
low-probability, large-impact, event.

Tools such as CREDITRISK+ trom CSFB, Credit-
Metrics from |.P. Morgan, Credit Portfolio View from
McKinsey & Co, or KMV's Portfolio Manager allow us to
gain important msights into credit risks, but a number of
important aspects are nussing. CREDITRISK+, for exam-
ple, assesses credit risk due to default losses only withour
taking into consideration the term structure of credit spreads.
CreditMetrics allows calculation of the present value of a
portfolio of credit risk-sensitive assets depending on credir
risk only. Market risk 15 not incorporated explicitly. As a
result, no other risks apart from credit risk can be assessed
for their impact on the valuaton of the porttolio.

Jobst and Zenios [2001] show how some popular
pricing models can be extended to the valuation and
sumulation of portfolios of credit risky securities and their
derivatives, These extensions allow us to estimate the risk
profile of portfolios taking mto account market and spread
risk, and the risks of rating migration, detaults, and recov-
ery. The simulations reveal—and quantify—the flat tails
due to credit events.

For instance, Exhibit 2 shows a tlat lower taill when
credit rating migrations are simulated under current
cconomic conditions. This tail is absent when sumulat-
ing only market and spread changes under constant
volatility,

The tail in this example is quite pronounced as it was
sumulated assuming that the term structure of risk-free rates

EXHIBIT 2
Distribution of Returns of a Baa Bond Portfolio
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and credit spreads remains unchanged. Exhibit 3 devel-
ops the simulation of the same portfolio integrating mar-
ket and credit spread risk, and then adding the credit
events, 1.e., credit rating migrations and defaults. The tail
is once more evident but not when we look at the (.95
quantile of the distributions.

The 0.95 quantiles of the two distributions shown
in Exhibit 3 are positive and very close ro each other, but
the 0.99 quantles have the opposite signs and differ by an
order of magnitude, There are no losses at the .95 prob-
ability level, even when credit events are properly simu-
lated. At the (1.99 probability level, however, we abserve
losses of 1.7% when credit events are simulated.

The lesson to take away is that tails are probabihis-
tic events, and without an accurate simulation method they
may be missed.

Improved simulation may take the form of accurate
numerical methods for tail resolution or the use of con-
fidence intervals tor the extremes of the loss distribution,

or any ather technique that allows us to observe the tails
that drive low-probability events. We will see later that
this observation has ramifications for the choice of an
appropriate risk metric for portfoho optimization.

TAIL EFFECTS ON EFFICIENT FRONTIERS

[enoring the tails has a sigmficant effect on the eth-
cient fronners. We simulate first the distribunon of returns
of 17 bonds rated Baa, without credit rating migration and
defaults, and apply a mean absolute deviation portfolio
optimization maodel (the MAD of Konno and Yamazaki
[1991]) to these simulated data.

The ethcient frontier ot porttohio expected return
against 1ts mean absolute deviation 1s shown by the fine
line in Exhibit 4. The dashed hne represents the frontier
calculated according to the expected return and the mean
absolute deviation of the optimized portfolios and using
the distribution of returns with credit ranng migrations and

EXHIBIT 3
Distribution of Returns of a Baa Bond Portfolio
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defaults. Thus we perform an out-of=sample sensitivity
analysis of the frontier using tail scenarios that are not
included in the scenario sample of the optimization model.

There 15 nothing efficient about the optimized port-
folios obtained by ignoring the tails, once the tails are
properly accounted for. This 1s our second observation:
Tails distort the risk-return frontiers, making scemingly
efficient portfolios mefficient ones.

Running the mean absolute deviation portfolio
optinization using the distribution with credit events, we
obtain a frontier that is very close to the out-of-sample
frontier and eliminates the nefticient portfolios; this fron-
tier 18 shown by the thick sohd line in Exhibit 4. Doces this
imply that it is sufficient to accurately simulate the tails,
and then develop portfolios that optimally trade off
expected return against risk? The answer 15 of course
affirmative, although the mean absolute deviation risk
measure does not properly account for the tails.

The distribution of returns of the minimum-risk
portfolio obtained using the MAD modcl is shown in
Exhibit 5. Note there is a small probability of losses in
excess of 80% ot the portfolio value. These losses are
likely to be catastrophic, and when they occur they will
most likely—due to bankruptcy—-block the prospects of
the long-term expected return. The long-term expected
return of the minimum-risk portfolio obtained using
MATY 15 5.5%, a return that will be realized only if the
portfolio is not ruined n the short term.

ExHaisiT 4

Frontier Generated Using MAD Portfolio Optimization

frontier obtained with simulated tails
frontier obtained without simulated tails

Expecled Return
=
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T'his 1s the same observation Stulz [1996] makes in
explaining the discrepancy between the corporate use of
derivative securities advocated by theory, and their acrual
use 1n practice as revealed by the Wharton surveys (see Bod-
nar, Hayt, and Marston [1998] for the latest survey results).
[t 1s a common limitation when applying mean-variance
or MAD models to optimize non-normal distributions:
Leland [1999] shows similar problems with Sharpe ratios.

What then should be done in order to properly
account for the tail effects? The answer is to select a risk
metric that penalizes appropriately extreme events, and
then optimize the portfolio composition with respect to
this metric of risk.

OPTIMIZING THE RIGHT RISK METRIC

Value ar Risk (VaR) has becomie an indusery standard
for measuring extreme events and integrating disparate
sources of risk. VaR answers a particular question: What
1s the maximum loss with a given confidence level (say,
o X 100%) over the target horizon? Its calculation also
reveals that with probability (1 — o) 100% the losses will
exceed VaR.

Consider a porttolio with value 17 (x, P). This is a
function of the holdings x = (x,)7_ | ofasscts in the port-
folio, and of the random asset prices P. If the current value
of the porttolio is V
by the loss function:

the losses 1n portfolio value are given

[1*

= = = out of sample frontier with simulated tails

0.05 0.06 0.07 008  0.09

Mean Absolute Deviation

Fine line: Without stmdatig the tails due to credit events. Dashed line; Omt-of-sample perfonnance when credit events are
tcluded. Ieavy line: Frontier traced wsing a MAL model with simulated data of credit events.
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EXHIBIT 5

Distribution of Returns for Minimum-Risk Portfolio Obtained Using MAD Model
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L(x, P) = V,— V{(x, P) (1)

The relation between the loss function and portfolio
returns is given by

Lix, 7) ==R{x, 7)V, (2)

We assume a discrete scenario setting in which all
random quantities take values from a finite and discrete sce-
nario set indexed by members of a set Q. Thatis, P e
{P},_ . and the objective probability associated with each
scenario [ € L2 1s given by p'. Under this assumption, the
probability that the loss function does not exceed some
threshold value C 1s given by the probability function:

Wix, §) = X p (3)

e S Lix, Phel)

The value at risk of the portfolios is then defined
as follows:

Definition 1. The value at risk (VaR) of a portfolio at
the o probability level is the left o quantile of the losses of the

portfolio, i.e., the lowest possible value so that the probability of

losses less than VaR exceeds o0 X 100%. It is given as:

VaR (x, o) = min {CelR | y(x, {) = o} (4)
The guantile C 1s the left endpoint of the non
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empty interval consisting of the values  so that W(x, ()
= (. The dependence of VaR on the confidence level o
1s sometimes made explicit by referring to o—VaR..

Exhibit 3 illustrates the VaR of the return for a
credit risky portfolio of Baa bonds as 1.7% at the (.95
probability level, and —1.7% at the 0.99 probability. There
is a 1% chance of losses 1n excess of =1.7% and a 3% chance
that returns will be less than 1.79%.

The VaR measure reveals nothing about the extent
of the losses beyond the given confidence level. Such
losses can be catastrophic. Long-Term Capiral Manage-
ment 1s a case in point. LTCM was estimated to have a
VaR of only =5% at the 0.95 probability level, but a
return of =80% in September 1998 wiped out a position
of $1.85 trillion and threatened a global meltdown of the
financial markets.

A measure of risk that goes beyond the information
revealed by VaR is the expected value of the losses that
exceed VaR. This quantity is called expected shortfall, con-
ditional loss, or conditional VaR: see, e.g., Embrechts, KHip-
pelberg, and Mikosch [2000)].

For general distributions, the conditional VaR is
defined as a weighted average of VaR and the expected losses
that are strictly greater than ValR. For discrete distributions,
and under a mild technical condinon that the probabihity
of scenarios with losses strictly greater than VaR 1s exactly
equal to 1 — 0., i.e., Y(x, §) = a, the tollowing definition
applies:
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Definition 2. The conditional value ar risk (CVaR) of

the losses of the portfolio is the expected valie of the losses, con-
ditioned on the losses being in excess of TaR:

CVaR(x, o) = g[l(x, P) | L{x, P) > (] (5)

- 2 AleQ|Lix.P!) :af;}rigf—«'(--f‘ PY)

(6)
E{FL—&HL[ Y g }1’3

== Z{!Eﬂ”b[_j*j—?i}_}{-} E]"'L(;r? Pi"}
lL=ax

. C) = 0.
The dependence of CVaR. on the confidence level W 15
made explicit by referring to o—CVaR..

[t tollows from the defimtions that CVaRR 1s always
greater than or equal to VaR. Both VaR and CVaR are
funcrions of the asset allocation vector x and the per-
centile parameter o Tris natural to seek to minimize these
mecasurces by judiciously specifying the composition of the

where the last equality follows from the condition Y(x

asset portfolio.

VaRl s difficule to optimize when 1t 1s calculated
using discrete scenarios. The VaR function 1s non-con-
vex and non-smooth, and it has mulaple local muinima.
CVall, however, can be minimized using linear pro-
gramming formularions; see Rockafellar and Uryasev
12000)].

Consider the minimization of conditional value at
risk given above by

i 2 {1 Lz, P> PL %)

| S

CVaR(r, a) = (5)

Thus function can be expressed as a hinear model with
the use of auxihiary variables. Ler:

y, =max [0, L(x, P) = (], forallle Q ()

y! 1s equal to zero when the losses are less than or equal
to the value at risk, C, and it is equal to the excess loss when
the losses exceed C.

With this detinition of y' | we write:
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Zp if;, = Z P + Z Py (9.1)

[0 [ e, P e Lz, P =()

=4 E Ik (L{;r. 7. . t;)

{{EQ Lix. P ) =)

= E o' Liz, P') —( z 0

{tefdl Lz Phy>C) {1eQL(x, =)

Z pLie )= (1 -a)
()| Lin P>

I

Dividing both sides by (1 — ) and rearranging terms, we
get

2 yenii@. Py P L(x, PY)

] —

Zf{!.’z 'PE;"—A'L
l—o

(10)

The term on the right-hand side is CVaR (x, o) of Equa-
ton (8). It can be optimized using linear programming
to numumize the term on the lefe-hand side.

We mumnuze CVaR subject to constraints on the asset
denotes the set of
feasible solutions, and the condition that the expected
value of the portlolio exceeds some targer L. Using the
equivalent detimtion of CValRR from (10), we write the
model as [ollows:

allocation of the torm x € X. where X

Minimize ¢ (11)
reX ' | — o
subject to Z Px; > (12)
|
}.l_;l_ > I,("L p'l g forall [ e £ (13)
},._;'_ E () f.'Dl‘ Ei]l |IE Q '[:1“"}

(P= ) ﬂpff‘:f 1s the expected value of the price of asset
i.) Since the loss function L(x, P) 1s linear [see Equation
(1)], the model is linear (see the appendix for further
details). The solution to this model eives us the minimum
CVaR™ for a given target expected value W, and the VaR
value {* corresponding ro the minimum CVaR portfo-
lio. (Recall that CVaR 2 VaR and, hence, CVaR* > {*)

An efficient frontier trading off expected shortfall
against expected portfolio value 1s traced by varying the
parameter L. We develop the CVaR cfficient frontier of
portfolios of Baa bonds at the 0.99 and .95 probability
levels (see Exhibit 6). Exhibit 6 also plots the rrade-offs

Fary 20001



between CVaR and the expected rerurn of the optimal
porttolios obtained using a MAD model. That 1s, we take
the portfolios of the efficient frontier of Exhibit 4 and cal-
culate their CVaR.

Note from the two trontiers in Exhubat 6 (hrst graph)
that there 1s nothing efficient about the MAD optimized
portfolios when using a risk metric that properly accounts
for the rails of the optimized portfolios. It is not suflicient
to capture the tails in the sitmulaton phase, as we do in
Exhibit 4. We must also optimize the appropriate risk met-
ric, as 1in Exhibat 6.

In other words, to avoid distortions of the efficient
frontier duc to the tail events, we need Lo optimize a risk
metric that appropriately penalizes the tails, CVaR provides
such a rnsk metric. Note, however, from the second graph
in Exhibit 6 that the distortions of the [rontiers calculated
at the 0.95 probability level are barely noticeable for a
wide range of target porttolio values, while the differences
are distinct for a wider range of target values at the 0,99

probability level. We reemphasize that tail effects can be cap-
tured only with adequate accuracy of the models.

The Tail that Wags the Dog

The risk profile of a portfolio 1s shaped by the atten-
tion the risk manager pays to the tails. 'laking a CVaR per-
spective on risk management substantially reduces the
tails. Exhibit 7 shows the distribution of returns of the
minimum risk porttolio obtained when mininuzing CVaRk
at probability levels 0.95 and 0,99, The tail extends up to
—35% when minimizing CVaR at the 0.95 probability
level, but it shrinks to —10% when minimizing CVaR at
the .99 probability level. Both of these losses are sub-
stantially smaller than the losses in excess of 80% realized
when minimizing the mean absolute deviation measure
of risk as demonstrated in Exhibit 5.

Ot course the choice ot a risk metric has an effect
on the upside potential of the portfolio. We can see in the

EXHIBIT 6
Frontier Generated Using CVaR Portfolio Optimization
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distriburions of Exhibits 5 and 7 thar rthe upside poten-
rial 1s reduced as the rails are shrunk. There are the usual
rrade-offs between upside potennal and downside risk, but
in the contexe of credit risky securities the downside risk
1s dden in the tail and not 1 the variance or the mean
absolute devianon. In this respect CVaRR has an impor-
rant role to play in tracing efficient frontiers for the man-
agement of credie risk.

To VaR or to CVaR?

There is some debate among bath academiciang
and practitioners as to whether VaR or CVaR is the
appropriate metric for risk management applications.
ValR clearly has an advantage in the pracuce ot risk mea-
surernent, where 1t 1s considered the industry standard; see,
c.g., Jorion [1996]. CVaR | on the other hand, appears to
be the metric of choice in the mnsurance industry; see, c.g.,

Embrechts, Klippelberg, and Mikosch [2000]. Axiomatic

EXHIBIT 7

Distribution of Returns for Minimum-Risk Portfolio

characterizations of risk metrics—the notion of coherence
suggested by Artzner et al. [1999]—favor CVaR, which
is coherent, over VaR , which is not coherent.

Norions of coherence norwirhstanding, the fact that
CVaRR provides a bound for VaR, as well as the increas-
ing acceptance of VaR estimates by regulators, has some-
what shadowed the debate. Exhibit 8 shows the estimated
ValRl of CVaR-optimized portfolios obtained with and
without simulations of the tails. As expected, CVaR pro-
vides an upper bound for VaR | although the bound need
not be tight, especially when the rails are properly simu-
lared. Furthermore, the fronter of VaR. against expected
returns for the CVaR -optimized portfolios need not be
efficient. The distortion of the VaR frontier 1s pronounced
when the tails are properly simulared.

The resulrs in Exhibit 8 clearly make the point that
the choice between VaR and CVaR has significant ram-
ifications in the risk management of credit risky portfo-
lios. Given the flat tails witnessed in our simulations, and
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the coherence properties of CVaRR, we arguc that CValk
optimization provides the appropriate risk management
framework for credit risky portfolios. The adoption ot
CVaR criteria for credit risk management by Andersson
et al. [2001] is well justified, although their model does
not include all the sources of risk incorporated in the sim-
ulations of Jobst and Zenios [2001].

LONG-TERM PERFORMANCE
WITH SHORT-TERM TAILS

Optimizanon of portfolio performance for the
long run 1gnores the short-term etfects, This has been
the tradition 1 myopic single-period optimization mod-
cls. Ignoring the short-term effects can be catastrophic
in the presence of tails. In particular, the long-term
(expected) potennal of a porttolio strategy may never be
realized 1t an extreme event mn the short run results 1n

bankruptcy.

Long-Term Capital Management 1s a case in point.
When LTCM suffered losses of 80% in September 1998,
the New York Federal Reserve orchestrated a bailout.
Fourteen banks mmvested $3.6 billion 1o return tor a 90%
stake m the tirm. The tund eventually recovered 1ty losses
and posted positive returns, but the original stakcholders
were not there any more.

We look at the short-term effects of the tails on the
portiolios obtained with the MAD and the 0.99-CVaR
optimnization models. We take the mummumni-risk portfolio
from the eflicient frontiers of both models at a 12-month
risk horizon, and sumulate with out-of-sample scenarios
the distributions of returns at months 3, 6, and 9. The
results for the porttolios obtained by the MAD models are
shown 1 Extiubit 9. Results tor the CValR model are n
Exhibit 10.

The expected return ot the MAD optimized port-
tolio over the 12-month period 18 5.5%. The worst case
losses are on the order of 2% in the first three months, but

EXHIBIT 8
CVaR Efficient Portfolios and Estimated VaR

—————optimal (OO CYalHd trontier wWith tails

.99-vall { 99-Cvall™)

0.18 =
0.16
0.14
0.12
0.1

0.08
0.08 |
0.04 |
0.02 | |

0|

Expected Return

S —

0.06 -004 -002 0 0.02 0.04

Loss Size In %

0.06 0.08 0.1 012 014 0.16

optimal .99-CVaR frontier without tails
0.12 o o

ae-vaR (. 9u-Cvakt) |

0.1 i

0.08 e .

0.06

0.04

Expected Return

0.02

0 =:

-0.06 -0.05 0,04

-0.03

-0.02 -0.01 0

Loss Size in %

First graph: With tail effects. Second graph: Without iail effecs,

Solid lines: CVAR efficient portfolios, Dashed lines: Estimated VaR.,

CI1aR estimated at 1).99 pmhuhr'.f:'.f}- .|I{'M"|'

Farlr HXH

THE JOURMAL OF RISK FINAMNCE



they jump to 80% at months 6, 9, and 12. The probabil-
ity of these losses also increases with ame—from 0.17%
at month 6 to 0.34% at month 12. Although the proba-
bilities are small, these losses are potenaally catastrophic.
While the expected return of the MAD optimized port-
folio increases with time, so doces the probability of a
catastrophic event that will prevent the portfolio parh

from obtaining the long-run terminal value.
The expected return of the CVaR optimized port-

folio over the 12-month period 15 7.2% (Exhibit 10).
The worst case losses of this portfolio remain at around
10% throughout this time period. The probability of
losses increases marginally from month 3 to month 12, In
anv event, these losses are not catastrophic, and the long-
term expected return can be achieved. The CVaR opti-
mized portfolio not only has higher expected return than
the MAD optimized portfolio in the long run, but it also
has better downside risk protile in the short run.

EXHIBIT 9

Distribution of Returns of Minimum-Risk MAD Optimized Portfolio
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The impact of the tails when compounded through
time appears to be devastating, especially in the MAD port-
folio (assuming that investors will not rebalance). If one
uses reduced-torm models of default such as those discussed
in Jobst and Zenios |2001], credit events are typically
unpredictable. This implies that investors will not be able
to rebalance prior to a credit event. In tact, there 1s strong
evidence thar credit events may in part be predictable (tor
example, from cquity returns), and such information can
be included in the reduced-form framework (see Schon-

bucher and Schubert [2001]). This imphes that investors
would use these signals and reduce their exposure.

Multiperiod optimization models that incorporate
new information are currently available n the framework
of stochastic programming and have been successtully
applied in financial planning (see Kouwenberg and Zemos
[2001]). Using stochastic programming to improve further
the performance of the models introduced here is a promis-
ing direction for further research.

ExHIBIT 10

Distribution of Returns of Minimum-Risk CVaR Optimized Portfolio
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CONCLUDING REMARKS

We have highlighted the pitfalls of 1gnoring the
low-probability costly events ol default while integrating
credit nisky assets into portiolios. The shape of the risk pro-
file of the portfolio is affected substantially by the tails
caused by credit events. In order to efficiently tradeoft
long-term expected return with risks, we must recognize
that the risks are in the tails. The extreme credit events
must be properly simulated with sufficient accuracy.

l'urthermore, a risk metric must be chosen that
accurately captures the impact of the tails. Condirional
value-at-risk provides such a metric. Its use ensures that
long-term goals can be met, without suffering catastrophic
blows trom the tails in the short run. The models we
develop for limiting tail effects should also be applicable
to portfolios of assets with correlated defaults, such as col-
lateralized loan or debt obhgations.

APPENDIX
Linear 'rogramming Model

We can reformulate Equations (11)—(14) as a standard lin-
ear program suitable for implementation using any lincar pro-
gramming environment available such as the linear programming
solver m EXCEL or any other mathematical programming systern.”

Fariables:

x! Holdings of asset 1

. Auxthary variable under scenario [ of the index set of
scenarios € and

C: Value at Risk at a mven confidence level o.

Parameters:

I Imnal portfolio value (set equal to one in our exper-
IMCnts);

P Imunal price of asset

T : Expccred return of assert i

r': Return of asset 1 under scenario /;

v Probability of scenano |/

L: Target portfolio return;

¢: Contidence level for CVaR calculation.

- | 1 A-1)
Minimize ¢+ -——>" Py A<l
LN 1 —oa 10
i
subject ro Z f“:,ﬂ.'ri: = Vi (A-2)
=1
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.

Y PY1+m)a = (14 p)V, (A-3)

=1
m

e 2= @i B¢

forall l € L2 (A-4)

r=

y. >0 forallle Q  (A-5)

r;, = 0 forall i = 1... m (A-6)
ENDNOTES

This work was completed while Stavros A. Zenios was
with Algorithmics, Inc., as a Marie Curie Fellow of the Euro-
pean Commuisston. Mr. Norbert Jobst thanks Fidelity Invest-
ments for inancial support. This research 15 also funded in part
by the HERMES Center of Excellence on Computational
I"inance and Economics under contract ICA1-CT-2000-70(115,

'"To carry out the 2.5 million simulation runs on a port
folio of approximarcly 600 securities takes on the order of two
hours on a Pentivm 800Mhz machine. The application could
be signiticantly sped up by using closed-form solunons for
bond pricing instead of the more general tree implementation
used 1n Jobst and Zemos [2001]. Additional efficiency gains
could be achieved using distributed networks of workstations
(see Cagan, Carriero, and Zemos [1993]), which would improve
real ome performance.

*Optimization models of the size reported here
would be solved in one to two nunutes of computing time
on a Pentoum 800Mhz,
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