

Exploring the Reliability of Generic and Content-Specific Instructional Aspects in Physical Education Lessons: Insights from an Exploratory Study

Charalambos Y. Charalambous, Ermis Kyriakides, Niki Tsangaridou, Leonidas Kyriakides

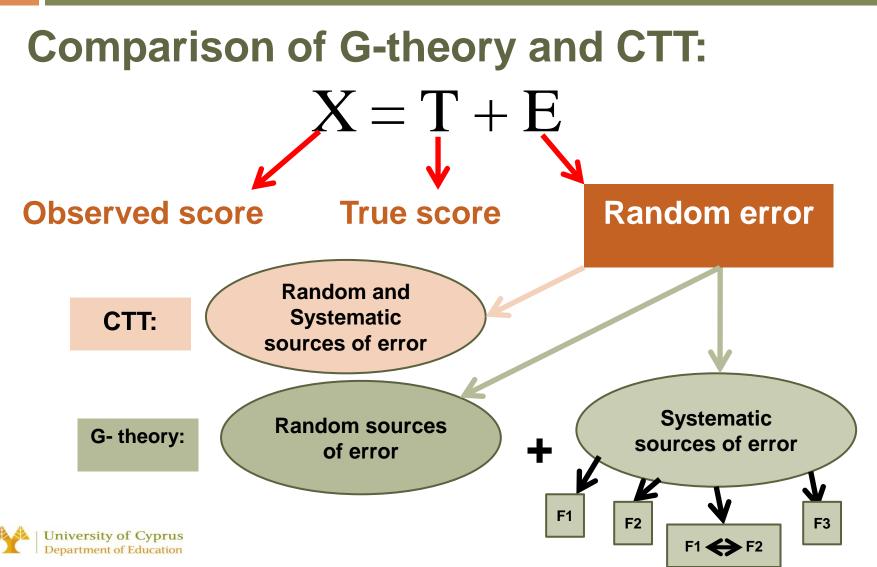
August 29, 2015

Session 19: School Effectiveness

Structure of Presentation

- The importance of classroom observations in measuring teaching quality
- Generalizability theory and its contribution to exploring issues of reliability
- Research Questions
- Methods
 - Instrumentation (Generic and Content-Specific Instructional Aspects)
 - Participants, Rater Training
 - Data collection and data analysis
- Selected findings
- Discussion and Implications

The Role of Observations for Measuring Teaching Quality


3

Different approaches for measuring teaching quality:

- Teacher ratings (Kunter & Baumert, 2006)
- Student ratings (Fauth et al., 2014)
- **Teacher logs** (Rowan, Harrison, & Hayes, 2004)
- Instructional artifacts (Martínez, Borko, & Stecher, 2012)
- Classroom observations (Wragg, 2012)
- □ The potential of classroom observation
 - Observations yield more reliable measures, as they can avoid many of the biases of self-report data (Strong, 2011)

Introduction: G-Theory and CTT

The G-theory framework

D-Studies:

 D-studies: thought experiments that help design future studies to maximize reliability in cost effective ways

□ Factors influencing classroom observation estimates:

- Observational instrument itself
- Recruitment and training of raters
- The scoring design (e.g., the number and the length of observations, the number of raters, the sequence of observations)
- ... (Casabianca et al., 2013; Hill, Charalambous, & Kraft, 2012; Kane & Staiger, 2012)

Significance of present study

- 6
- No studies have so far utilized this framework to examine the reliability of estimates of teaching quality obtained from classroom observations of PE lessons
- PE differs significantly from other content-areas
 - PE often focuses on different learning outcomes (psychomotor instead of cognitive)
 - Lessons are conducted in open-space within which students are constantly moving; hence learning might be affected by weather conditions or the possibility of an injury (Lindsay, 2014)

Generic vs Content-Specific instructional dimension

Generic and Content-Specific Instructional Aspects

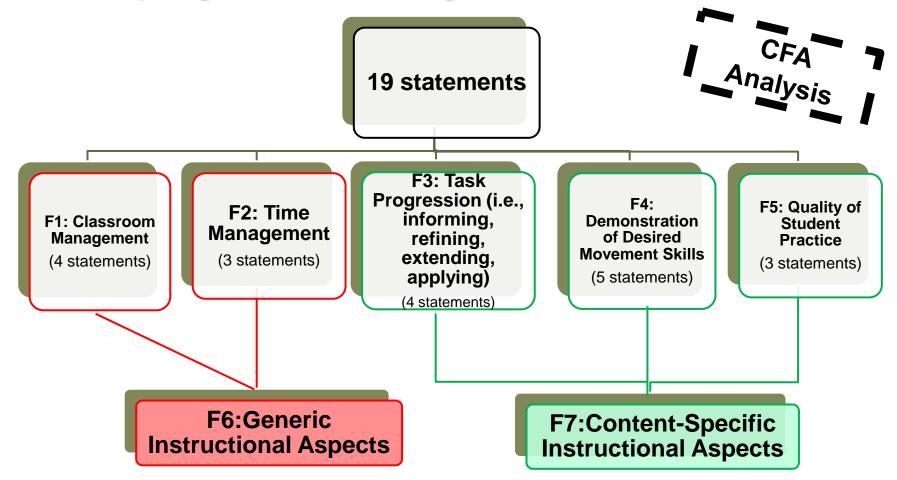
Generic Instructional Aspects

- Instructional features that cut across different disciplines
- They are important for teaching, regardless of the subject matter that gets taught (e. g., time and classroom management)

Content-Specific Instructional Aspects

- Instructional features that are particularly relevant to specific content-areas
- e.g., the use of demonstration for the desired movement skills for the discipline of PE

Research Questions


- What is the optimal combination of lesson observations and raters coding these lessons needed to yield reliable estimates of teachers' practice in PE?
- Does this optimal combination differ across generic and content-specific aspects of instruction?

Methods: Instrumentation

9

Sampling instrument: High Inference Rubric

Methods: Participants, Rater Training and Data Collection

Participants

10

• 49 generalist teachers who taught PE to 3rd to 5th elementary school students

Raters and Rater Training

- Four second-year master's students in PE
- Observing and coding videotaped and actual PE lessons
- Certification when at least 80% agreement was obtained with master-coder ratings

Data Collection

Three scheduled observations of 40-minute typical daily lessons of PE for each teacher

Methods: Design and Data Analyses

Design

- Two-facet design: Persons x Raters x Occasions
- Analyses of the seven factors (five first-order and two second-order)

Data Analyses

- GENOVA software
- G-Study: Partitioning the variance into three components under consideration (i.e., Person, Rater, and Occasion) and their interactions
- D-Studies: Altering the number of raters and the number of occasions for each factor to achieve at least 65% reliability

Selected Findings (1)

12

Variance Decomposition for the Seven Factors of the High-Inference Instrument

	Factors						
Source of Variation	F1*	F2*	F3*	F4*	F5*	F6*	F7*
Teachers (t)	38.94	38.69	35.52	44.61	14.37	41.98	47.29
Raters (r)	0.00	0.00	1.27	1.16	0.00	0.00	0.00
Occasions (o)	0.00	2.16	0.00	0.25	0.00	2.02	0.00
Teachers × Raters (t × r)	2.55	5.24	1.21	1.86	4.21	4.82	1.66
Teachers \times Occasions (t \times o)	33.33	35.23	49.10	42.50	37.29	32.21	42.57
Raters \times Occasions (t \times o)	0.77	0.00	0.00	0.03	0.87	0.36	0.05
Teachers × Occasions × Raters (t × o × r), residual	24.42	18.68	12.89	9.58	43.25	18.61	8.43
Total	100.00	100.00	100.00	100.00	100.00	100.00	100.00

*Average of items of each factor

Selected Findings (2)

13

University of Cyprus

Department of Education

90,00 90,00 80,00 80,00 70,00 70,00 60,00 60.00 Reliability (p) Reliability (p) 50,00 50,00 40,00 40,00 30,00 30,00 20,00 20,00 10,00 10,00 0,00 0,00 3 2 0 4 0 2 3 4 5 Number of Raters Number of Raters Factor 7:Content-Specific Instructional Aspects 4 lessons —1 lesson **Factor 6:Generic Instructional Aspects** =2 lessons - × 5 lessons

3 lessons

🛏 б lessons

Reliability Estimate

Reliability Estimate

August 29, 2015

5

Selected Findings (3)

14

Reliability Estimate Reliability Estimate 90.00 90,00 80,00 80,00 70,00 70,00 60,00 50,00 40,00 30,00 20,00 60,00 Reliability (p) 50,00 40,00 30,00 20,00 10,00 10,00 0,00 0,00 2 3 4 5 0 2 3 0 1 4 Number of Raters Number of Raters 4 lessons **Factor 5: Quality of Student Practice** —1 lesson **Factor 3:Task Progression** 2 lessons Ӿ 5 lessons

🗲 6 lessons

3 lessons

5

Discussion

- Importance of exploring reliabilities yielded from observational rubrics using the G-theory framework
- Reliabilities cannot and should not be taken for granted: they are the composite of different components within an observational system
- Different dimensions might exhibit different reliabilities
- Implications
 - Rater training and certification
 - Appropriateness of existing teacher evaluation approaches?

Questions?

Comments?

Suggestions?

August 29, 2015

Thank you for your attention!

Contact information:

- Charalambos Y. Charalambous
 - cycharal@ucy.ac.cy
- Ermis Kyriakides
 - kyriakides.ermis@ucy.ac.cy
- Niki Tsangaridou edniki@ucy.ac.cy
- Leonidas Kyriakides
 <u>kyriakid@ucy.ac.cy</u>

References

18

- Casabianca, J. M., McCaffrey, D. F., Gitomer, D. H., Bell, C. A., Hamre, B. K., & Pianta, R. C. (2013). Effect of observation mode on measures of secondary mathematics teaching. *Educational and Psychological Measurement*, 73(5), 757-783, doi:10.1177/0013164413486987.
- Fauth, B., Decristan, J., Rieser, S., Klieme, E., & Büttner, G. (2014). Student ratings of teaching quality in primary school: Dimensions and prediction of student outcomes. *Learning and Instruction, 29*, 1-9, doi: 10.1016/j.learninstruc.2013.07.001.
- Hill, H. C., Charalambous, C. Y., & Kraft, M. A. (2012). When rater reliability is not enough: Teacher observation systems and a case for the generalizability study. *Educational Researcher*, *41*(2), 56-64, doi: 10.3102/0013189X12437203.
- Kane, T. J., & Staiger, D. O. (2012). Gathering feedback for teaching: Combining high-quality observations with student surveys and achievement gains. Seattle: Bill & Melinda Gates Foundation. Retrieved November 30, 2012, from <u>http://www.metproject.org/reports.php</u>
- Kunter, M., & Baumert, J. (2006). Who is the expert? Construct and criteria validity of student and teacher ratings of instruction. *Learning Environment Research*, *9*, 231-251, doi: 10.1007/s10984-006-9015-7.
- Lindsay, E. L. (2014). Effective teaching in physical education: The view from a variety of trenches. Research Quarterly for Exercise and Sport, 85(1), 31-37, doi: 10.1080/02701367.2014.873330.
- Martinez, J. F., Borko, H., Stecher, B. M. (2012). Measuring instructional practice in science using classroom artifacts: Lessons learned from two validation studies. *Journal of Research in Science Teaching, 49*(1), 38-67, doi: 10.1002/tea.20447.
- Rowan, B., Harrison, D. M., & Hayes, A. (2004). Using instructional logs to study mathematics curriculum and teaching in the early grades. *The Elementary School Journal*, *105*(1), 103-127.
- Strong, M. (2011). The highly qualified teacher: What is teacher quality and how do we measure it? New York, NY: Teachers College Press.