29th International Congress for School Effectiveness and Improvement January 6-9, 2016, Glasgow, Scotland

Using Different Measures of Teaching Quality to Predict Student Learning in Mathematics: An Exploratory Study

Charalambos Y. Charalambous & Ermis Kyriakides

1

Department of Education, University of Cyprus

Structure of Presentation

- 2
- Why should we measure teaching quality accurately?
- Different approaches to measuring teaching quality
- Research purpose and research questions
- Methods
- Selected findings
- Discussion and tentative conclusions
- Lessons learned and open issues

Why Measuring Teaching Quality Accurately?

Teachers matter for student learning:

- Empirical studies have repeatedly documented teachers' role for student learning (Hattie, 2009; Nye, Konstantopoulos, & Hedges, 2004; Strong, 2011)
- Teacher effects have been found to explain a higher percentage of variance in student achievement compared to school-effects or system-level effects (Muijs & Reynolds, 2001; Scheerens & Bosker, 1999)
- Increased accountability pressures
 - Need to ensure that public expenditure on education is well spent (cf. Papay, 2012) –especially during an era of economic crisis

- 4
- Several approaches pursued to measure teaching quality:
 - classroom observations (e.g., Douglas, 2009)
 - teacher logs (e.g., Rowan & Correnti, 2009)
 - principal ratings (e.g., Harris, Ingle, & Rutledge, 2014)
 - teacher ratings (e.g., Kyrgiridis et al., 2014)
 - student ratings (e.g., De Jong & Westerhof, 2001; Fauth et al., 2014)

Classroom observations:

The "gold standard" of measuring teaching quality (Rowan & Correnti, 2009)

Can avoid many of the biases associated with self-reported data (Strong, 2011) → can yield more reliable data

Can produce stronger effects than those obtained through teacher selfreports or student surveys (e.g., Seidel & Shavelson, 2007)

Expensive to obtain

Estimates are influenced by a variety of factors, including the observational instrument, the recruitment and training of raters, the number and the length of observations to be conducted etc. (cf. Casabianca et al., 2013; Hill, Charalambous. & Kraft, 2012; Praetorius, Lenske, & Helmke, 2012)

Teacher ratings:

Provide **inexpensive measures** of teaching quality with increased face validity (Kunter & Baumert, 2006)

Correlations between teacher selfreported data and student learning have been **moderate** (e.g., Mayer, 1999; Porter, 2002) Teachers might deliberately (Blank, 2002) or unwittingly (Cohen, 1990) delineate their work in ways that depart notably from their actual practice→ significant bias

Teachers' reports on annual surveys hardly capture the complexity and variability of their instruction (Rowan & Correnti, 2009)

Friday, January 8, 2016

ICSEI 2016, Glasgow

Student ratings:

Can have **even higher predictive validity** than classroom observations when aggregated at the classroom level (De Jong & Westerhof, 2001)

Can accurately delineate teachers' day-to-day work (Fauth et al., 2014; Hastie & Siedentop, 1999)

Cheaper to obtain than classroom observations

Can produce trustworthy measures of teaching quality, largely when students are asked questions about **easily observed behaviors** (Fauth et al., 2014; Panayiotou et al., 2014)

Can be affected by factors such as **teacher popularity** (Kunter & Baumert, 2006)

ICSEI 2016, Glasgow

Research Purpose and Research Questions

Purpose:

- Contribute to the ongoing dialogue about measuring teaching quality effectively and accurately
 - Explore the predictive validity of classroom observations, student ratings, and teacher ratings
 - Consider both cognitive and affective learning outcomes

Research questions:

- Which approach has more predictive power in determining student learning outcomes?
- Are these approaches differentially effective in predicting student learning when it comes to different types of learning outcomes?

Participants:

- 948 3rd to 6th elementary school students
- 50 elementary school teachers

Data collection:

- Cognitive learning outcomes:
 - students completed a test measuring their performance in mathematics at the beginning and end of the academic year 2014-2015; test validated in prior studies (Kyriakides & Creemers, 2008)
- Affective learning outcomes:
 - students completed a questionnaire measuring their attitudes and beliefs towards doing and learning mathematics (administered at the beginning and end of the academic year 2014-2015; questionnaire based on TIMSS survey)

Data collection:

- Classroom observations:
 - Each teacher was observed three times during the academic year by three independent raters, using two observational rubrics
 - the Dynamic Model of Educational Effectiveness (Creemers & Kyriakides, 2008): generic teaching practices
 - the Mathematical Quality of Instruction (Learning Mathematics for Teaching, 2011): content-specific teaching practices
 - Student and teacher ratings:
 - Student and teacher surveys completed at the end of the academic year 2014-2015
 - Surveys explored certain generic or content-specific aspects of teaching quality

Data analyses:

- **Rasch model** applied to the student test data → a scale with satisfactory psychometric properties was developed
- Exploratory factor analyses applied to the student survey : three factors consistently yielded for both administrations; two met acceptable reliability thresholds (positive attitude toward mathematics; positive self-efficacy beliefs)

Confirmatory factor analyses applied to observations/student ratings

- Richness of the mathematics and cognitive activation (low inference classroom observation rubric)
- Richness, cognitive activation, and focusing on mathematical procedures (high-inference classroom observation rubric)
- Richness, cognitive activation, and working w/students & math (st. ratings)

Teacher ratings

Richness, cognitive activation, mathematical procedures, and working with students and mathematics (no factor analysis applied because of small sample size)

12

Data analyses: Multi-level analyses

$$Y_{ij} = \pi_{0j} + \pi_1 X_{1ij} + \sum_{s=2}^{S} \pi_s X_{sij} + e_{ijk}$$
 (Eq. 1)

Where:

- Y_{ij} is the end-of-year outcome (cognitive or affective) of student *i* taught by teacher *j*;
- X_{1ii} is the variable corresponding to students' initial cognitive or affective performance [grand-mean centered]) (entered in Model 1);
- X_{sij} are the student background characteristics (gender [dummy variable], and SES indicators) (entered in Model 2);
- π_{0j} is the adjusted mean performance for students of teacher *j* after controlling for student initial performance and background characteristics;
- π_1 is the fixed effect of student beginning-of-year performance;
- π_s are the fixed effects of student background characteristics;
- e_{ij} is the random "student effect," that is the deviation of student i of teacher from the teacher-group mean.

Data analyses:

Multi-level analyses

$$\pi_{0j} = \beta_{00} + \sum_{m=1}^{M} \beta_{0m} W_{mj} + u_{0j} \qquad \text{(Eq. 2a)}$$

$$\pi_{0j} = \beta_{00} + \sum_{n=1}^{N} \beta_{0n} W_{nj} + u_{0j} \qquad \text{(Eq. 2b)}$$

$$\pi_{0j} = \beta_{00} + \sum_{p=1}^{P} \beta_{0p} W_{pj} + u_{0j} \qquad \text{(Eq. 2c)}$$

Where:

- β_{00k} is the grand mean;
- W_{mj} are the content-specific teaching practice scores from lesson observations of teacher j (grand-mean centered);
- W_{nj} are the content-specific teaching practice scores from student ratings for teacher j (grand-mean centered);
- W_{pj} are the content-specific teaching practice scores from teacher ratings for teacher j (grand-mean centered);
- β_{0m} are the effects of content-specific practices for the observational scores;
- β_{0n} are the effects of content-specific practices for student ratings;
- β_{0p} are the effects of content-specific practices for teacher ratings;
- u_{0j} is the random "teacher effect," that is the deviation of teacher j's mean from the grand mean.

Selected Findings

Cognitive learning outcomes:

- 28% of the variance at the teacher level in the null model, but only 3% remained unexplained after introducing pre-test results
- Used student learning as the dependent variable:
 - 9.69% of the variance at the teacher level
 - Percentage of unexplained teacher-level variance explained when introducing:
 - Classroom observations (factors): 17.65%
 - Student ratings (factors): 0%
 - Teacher ratings (composites): 0%
 - Classroom observations (individual codes): 58.82%
 - Student ratings (individual statements): 8.40%
 - Teacher ratings (individual statements): 57.14%

Selected Findings

Affective learning outcomes (positive attitudes):

- 14.88% of the variance at the teacher level in the null model
- 8.76% of the variance at the teacher level remained unexplained once introducing the initial measure
 - Percentage of unexplained teacher-level variance explained when introducing:
 - Classroom observations (factors): 0%
 - Student ratings (factors): 37.63%
 - Teacher ratings (composites): 0%
 - Classroom observations (individual codes): 30.11%
 - Student ratings (individual statements): 59.14%
 - Teacher ratings (individual statements): 44.09%

Selected Findings

Affective learning outcomes (positive self-efficacy beliefs):

- 4.43% of the variance at the teacher level in the null model; 2.99% of the variance at the teacher level remained unexplained once introducing the initial measure
- Used the difference as the dependent variable (4.70% unexplained variance at the teacher level)
 - Percentage of unexplained teacher-level variance explained when introducing:
 - Classroom observations (factors): 0%
 - Student ratings (factors): 25.71%
 - Teacher ratings (composites): 22.86%
 - Classroom observations (individual codes): 28.57%
 - Student ratings (individual statements): 31.43%
 - Teacher ratings (individual statements): 37.14%

Discussion and Tentative Conclusions

Some interesting patters:

- Using factors or composites:
 - Cognitive results: classroom observations >student/teacher ratings
 - Affective results: student ratings first and classroom observations last
- Using individual statements:
 - Cognitive results: classroom observations ≈ teacher ratings > student ratings
 - Affective results: student/teacher ratings > classroom observations
- Which measurement approach is best?
 - It depends on the type of the learning outcome considered
 - It depends on whether composites or individual statements are being used

Lessons Learned and Open Issues

- 18
 - Importance of considering different learning outcomes; cognitive or affective learning outcomes in isolation yield only part of the story
 - Why these differences occur calls for future (more qualitative?) studies
 - Results concern content-specific teaching practices; it remains an open issue whether these patterns are replicated for generic teaching practices
 - Importance of combining different approaches to better understand student learning: difficult in the present study because of the small percentage of teacher-level variance and issues of multicollinearity
 - Using composites or individual statements?
 - Do composites have more noise than individual statements?

Thank you for your attention!

Comments
Questions
Suggestions

Charalambos Y. Charalambous cycharal@ucy.ac.cy

